

European Masters
in Interactive Multimedia Projects

Organisés à Bruxelles par l’Institut Supérieur de Commerce Saint-Louis

et l’Institut Supérieur de Formation Sociale et de Communication
 avec le soutien du

Programme LEONARDO da VINCI de la Commission européenne

Open Technologies for an Open World
Open Standards, Open Source, Open Mind

© 2003 Jean Binder

Open Technologies for An Open World Jean Binder

 ii

Document version : 1.3

File: OpenTechnologies v13 L02.doc
Revision: 5/07/2003 - 10:12 PM

Open Technologies for An Open World Jean Binder

 iii

Table of Contents

FOREWORD __ VI

1. INTRODUCTION ___ 1
1.1. STRUCTURE __ 1
1.2. OPEN ___ 3
1.3. THE OPEN MODEL ___ 3

1.3.1. Open Source ___ 3
1.3.2. The Open Standards ___ 7

PART I – OPEN TECHNOLOGIES ___ 12

2. OPEN INFRASTRUCTURE__ 13
2.1. HARDWARE ___ 13

2.1.1. Traditional Server Families ______________________________________ 13
2.1.2. Servers – The new generation ____________________________________ 16
2.1.3. Autonomic grid on demand ______________________________________ 17
2.1.4. Clients___ 19

2.2. OPERATING SYSTEMS ___ 21
2.2.1. z/VM and z/OS __ 21
2.2.2. UNIX® __ 25
2.2.3. Linux __ 30
2.2.4. Windows ___ 35
2.2.5. Other Operating Systems __ 40
2.2.6. Classification ___ 41

2.3. COMMUNICATION __ 42
2.3.1. Network__ 42
2.3.2. Addressing ___ 44
2.3.3. The Internet __ 45
2.3.4. Trend: Open Spectrum __ 47

2.4. OPEN TRENDS ___ 48

3. OPEN INTERNET DEVELOPMENT____________________________________ 52

3.1. DESIGN __ 52
3.1.1. MDA __ 52
3.1.2. CORBA __ 55
3.1.3. UML __ 57

3.2. WEB PLATFORMS __ 61
3.2.1. Java___ 61
3.2.2. .NET __ 65
3.2.3. Java.NET __ 68
3.2.4. The outsiders: LAMP ___ 69

3.3. WEB SERVICES __ 72
3.4. AGILE DEVELOPMENT ___ 75
3.5. EXTREME PROGRAMMING __ 75

3.5.1. Extreme Programming and Open Source____________________________ 76
3.6. OPEN DECISION __ 78

4. COMMON STRUCTURES FOR DATA EXCHANGE______________________ 80

4.1. CONTENT___ 80

Open Technologies for An Open World Jean Binder

 iv

4.1.1. Character Codes___ 80
4.1.2. Multimedia ___ 81
4.1.3. Formats for the Document Interchange _____________________________ 82

4.2. XML __ 83
4.2.1. Introduction __ 83
4.2.2. Technical Strengths __ 84
4.2.3. Openness___ 85
4.2.4. XML components __ 86
4.2.5. Industry Applications ___ 86

4.3. TRENDS __ 87

PART II – BRAVE OPEN WORLD ___ 89

5. THE NETWORK SOCIETY ___ 90
5.1. NETWORKS ___ 90
5.2. THE NETWORK ENTERPRISE __ 91

5.2.1. From merchant networks __ 91
5.2.2. To the merchantable network _____________________________________ 92

5.3. PEER-TO-PEER AND COLLECTIVE CONSCIENCE_____________________________ 92
5.3.1. Online communities __ 93
5.3.2. Peer networks and cooperative computing __________________________ 94
5.3.3. May the force be with the hackers _________________________________ 94
5.3.4. The motivated and ethical hacker__________________________________ 95
5.3.5. May the force be with the hackers _________________________________ 95
5.3.6. Lingua Franca __ 96

5.4. PRIVACY ___ 96

6. THE NEW ECONOMY__ 98
6.1. STANDARD WARS___ 98
6.2. NETWORK EXTERNALITIES ___ 99
6.3. FEEDBACK ___ 100

6.3.1. Positive ___ 101
6.3.2. Negative __ 102
6.3.3. The role of the standards _______________________________________ 102

6.4. COST ANALYSIS __ 103
6.4.1. Production Costs ___ 103
6.4.2. Reproduction Costs ___ 103
6.4.3. Distribution Costs___ 104
6.4.4. Transaction Costs___ 104
6.4.5. Changing costs ___ 104
6.4.6. TCO ___ 106
6.4.7. Cost comparison__ 108
6.4.8. ROI - The conclusion is beyond the costs___________________________ 109
6.4.9. Case studies – cost reduction ____________________________________ 111

6.5. EVOLUTION AND CONTROL: TWO FLAVOURS, FOUR STRATEGIES _____________ 113
6.5.1. Openness or Control___ 113
6.5.2. Performance or Compatibility ___________________________________ 114
6.5.3. The strategies __ 114

6.6. THE SHIFT OF POWER ___ 115
6.6.1. Behind the marketing scenes ____________________________________ 116
6.6.2. The experience economy__ 117
6.6.3. Branding __ 118

Open Technologies for An Open World Jean Binder

 v

7. POLITICS __ 119
7.1. OPENNESS BY RESEARCH __ 119
7.2. OPENNESS BY USAGE ___ 120
7.3. OPENNESS BY LAW ENFORCEMENT ____________________________________ 121
7.4. OPENNESS BY STIMULATION ___ 122

PART III – CODA ___ 123

8. OPEN FUTURE ___ 124
8.1. INCA __ 125

PART IV – ANNEXES__ 126

APPENDIX A. THE OPEN BOOK_______________________________________ 127

APPENDIX B. STANDARDS ORGANIZATIONS _________________________ 128

APPENDIX C. REFERENCES __ 131
C.1. TRADEMARKS __ 131
C.2. FIGURES __ 131
C.3. TABLES ___ 132

APPENDIX D. BIBLIOGRAPHY__ 133

APPENDIX E. INDEX ___ 144

Open Technologies for An Open World Jean Binder

 vi

Foreword

• Motivations
“Sometimes dreams are all that separate us from the machines” – Dan Simmons in The Fall of

Hyperion

“Sometimes (…) the shortest route to courage is absolute ignorance” – Dan Simmons in Endymion

Recently we have heard a lot about Linux. Several discussions have been held in the
professional circles, and the media is getting the message to the general public. It
can be considered the major open source product, and the responsible for this public
awareness. However, the concepts behind open source must also be explained, and
- beyond this - the existence of open standards and protocols shall be understood.
The comparison between “open” and proprietary software should not be limited to the
cost, neither be influenced by the impression that open means free. What is the
importance of this understanding for multimedia project managers?

There is a general theory about the transparency of the computer infrastructure for
the Internet and intranet implementations, in phases like design, project management
and decision-making. During this document, I aim to prove the importance of a
general understanding of the hardware, software and communication infrastructure,
to improve the overall quality of the project and the decision making process. The
first battle between open and proprietary solutions will take place in the technological
field. And this is only the beginning of the war.

The knowledge acquired when studying the impact of standards and open source for
the Internet infrastructure, may be used to understand the consequences in other
levels, like the design, the development and the exchange of structured information.
Intensive research has been performed in the last decade, now the solutions are
ready to be deployed. It’s time to participate in the dialogs, discussion and analysis,
which will make the standards for the future. It’s essential to understand the social
and economical rationales behind open and proprietary solutions, and how the
political world can help to build a technological future.

This is an ambitious thought, I agree. Nevertheless, the ongoing social movements
using the peer-to-peer concept are showing the power of tightly coupled motivated
persons. Linux is there to prove it.

• Sources

I tried to be eclectic, using some books and syllabi as basic references for the
technological, economical and social analysis, my 2-year collection of Datanews
magazines to analyse the current evolutions of the Belgian and European market and
political environment, seminars and the Internet to complete the evaluation from a
global and updated standpoint. These are always fully referenced in the footnotes,
with complete details being given in the Appendix D.

Open Technologies for An Open World Jean Binder

 vii

• Method

There are many different technological aspects discussed in this document. At a first
sight, it may look like a collection of superficial investigations about different topics.
However, it aims to discuss open solutions in a very broad scope. So I studied every
information technology aspect, which is at the same time important to the
development of multimedia applications and currently with interesting questions
about the choice of open or proprietary alternatives. A brief explanation about the
technology itself is always given in the beginning of each chapter and paragraph, to
allow the reading of this document without pre-requisites. The focus of the discussion
is always around open source and open standards. To allow this document to be
read in modules or in non-sequential browsing, the conclusions are often done in the
end of each chapter and paragraphs.

• The light side of the moon

There are two ways of reading this thesis. The shortest and funny way is to go
directly to the online conclusion (http://www.k-binder.be/INCA/), play around with the
suggested architecture for the future, and then come back to the document and read
only the topics that really interest and attract you. Then disagree with my standpoint
and tell me why (by using the website to exchange opinions, the readers can have an
open discussion around the topics discussed in this document, which can be a basis
for the effective design of the new architecture).

The second way is to continue reading this document.

• Acknowledgements

Many thanks to my wife Joyce for the strong support during the long research
evenings, nights and weekends. Big thanks to my sister Mariana who helped me to
keep concentrated to finish this work. The open spirit of my daughter and family, from
the cradle, were also fundamental for my motivations.

Special regards to the Professor Jean-Luc Vidick for the help to structure this
document in its final form, and to complete it with important topics about the extreme
development; to the professor Michel Bauwens for the interesting discussions that
helped me to find the target subjects and to compose the bibliography; to the
professor Attila Darabos for the final revision; and to the professor Pierre Rummens
for the remarks about the research methods and the document formats and
structures.

I hope you enjoy the reading, and if you feel motivated by my ideas please feel free
to help me improving this document1.

1 mailto:jean@k-binder.be

http://www.k-binder.be/INCA/

Open Technologies for An Open World Jean Binder

 1

1. Introduction

1.1. Structure
“Let’s say there are four steps. Four stages. Four levels. The first Is learning the language of the

dead, the second is to learn the language of the living, the third is hearing the music of the spheres.
The fourth step is learning to take the first step.” – Dan Simmons in The Fall of Hyperion

The standardization is an important point to be considered in the evolution of the
different technologies, and so is their openness. It gives developers the possibility to
understand the infrastructure requirements, to create compatible products, to
participate in their evolution, to innovate. This openness may be well represented in
the source code, the “alma mater” of every computer program. We need to
understand “Open Source” as the concept created by computer programmers united
under the hackers ethic. However, we should not be limited by it: We shall go one
abstraction level further to define the “Open” concept, by analysing also the Open
Systems, the Open Standards and the Open Platforms. The first part of the analysis
will be divided into three different tiers, which compose together the realm of IT and
Internet today. They are the infrastructure, the development and the information
exchange (see figure below).

Figure 1 – The three tiers under the scope of the first part of this analysis

XP

Network

Hardware platform

Operating System

Web Platform

Web
Application

Web Application

Information Exchange

Development

Infrastructure

XML

MDA

Web
Services

Design
UML

Open Technologies for An Open World Jean Binder

 2

Let’s start by the bottom-level tier, and discuss in the first chapter the hardware and
the operating systems used to build the Internet infrastructure. Different alternatives
are investigated, trying to understand their original goals, their evolution, their current
situation and the tendencies. The analysis is always focused on the applicability of
the platforms as servers taking part on the Internet infrastructure. And what is the
base of Internet? The standards. They participated in the spread of the Net from the
very beginning, so they do in this document. The goal is to understand what are the
different hardware platforms, the software environments, their concepts, history and
targets, and how they became standards. We will also analyse what benefits we may
expect from the open environments, together with the level of openness available
from the common proprietary alternatives. We conclude with the role of standards on
the creation of network protocols used worldwide, tantamount for the success of
Internet.

In the second tier - development - we can consider the ongoing battle for a common
web platform and the role of the web services. This is excellent for a case study, as
we have three different warriors: An open source, an open platform, and a proprietary
solution. Additionally we will analyse the usage of common rules to exchange
information about the design of applications and data, with the goal of technology
independence: MDA and UML. We briefly discuss the extreme programming
concepts and their relation with the open source products and projects.

The analysis ends with the third tier – information exchange - by exploiting the
benefits of a common language to exchange information and data definitions,
coupled and structured. This is done by XML and its derivates.

The aim of the second part is to analyse the technologies by a broader standpoint.
We should be able to trace some conclusions and imagine future trends and
proposals. Using the cases detailed in the first part, we will analyse some of the basic
concepts around the network society and the new economy, trying to understand the
impact of standards in the usage of technological power, the strategies currently
used by the enterprises, the comparative elements between open and proprietary
solutions. Finally, we will discuss the role of politics, to enforce or stimulate the usage
of open technology.

This study contains background material that introduces some important topics for
readers who are not familiar with them. References are provided for those who want
more complete understanding. The hyperlinks fans should refer to the Appendix A,
on page 127, and feel free to use the online version on www.k-binder.be/Papers/,
which intend to be often up-to-date. As an avant-goût, the basic concepts used
during the rest of the document.

http://www.k-binder.be/Papers/

Open Technologies for An Open World Jean Binder

 3

1.2. Open

To define the Open general concept, under the scope of this study, let us consider
two definitions, with the help from the dictionary1:

Open

1: having no enclosing or confining barrier: accessible on all or nearly all sides
5: not restricted to a particular group or category of participants

Based on this, we can consider as “Open” any product, concept, idea or standard:

! That is freely available to be researched, investigated, analysed and used with

respect to the intellectual property;

! That can be adapted, completed and updated by any person or company

interested in improving its quality or the functionality, possibly coordinated by a
person or organization.

Let us now analyse the open model, used for Open source development and the
establishment of open standards.

1.3. The Open Model

1.3.1. Open Source

• Definition

Historically, the makers of proprietary software have generally not made source code
available. Defined as “any program whose source code is made available for use or
modification as users or other developers see fit” 2, open source software is usually
developed as a public collaboration and made freely available.

Open Source is a certification mark owned by the Open Source Initiative (OSI).
Developers of open software (software intended to be freely shared, potentially
improved and redistributed by others) can use the Open Source trademark if their
distribution terms conform to the OSI's Open Source Definition3. All the terms below
must be applied together, for the product and its license, and in all cases:

! Free Redistribution – The software being distributed must be redistributed to

anyone else without any restriction.

! Source Code – The source code must be made available (so that the

receiving party will be able to improve or modify it)

1 Source: Webster's Revised Unabridged Dictionary, © 1996, 1998 MICRA, Inc.
2 Source: searchSolaris.com
3 Source: www.opensource.org/osd.html

Open Technologies for An Open World Jean Binder

 4

! Derived works – The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of the
original software.

! Integrity of the Author’s Source Code – The license must explicitly permit

distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the
original software.

! No discrimination against persons or groups

! No discrimination against fields of endeavour – It may not restrict the program

from being used in a business, or from being used for a specific type of
research.

! Distribution of license – The rights attached to the program must apply to

whom the program is redistributed without the need for execution of an
additional license by those parties. In other words, the license must be
automatic, no signature required.

! License must not be specific to a product – A product identified as Open

Source cannot be free only if used in a particular brand of Linux distribution.

! License must not contaminate other software – The license must not place

restrictions on other software that is distributed along with the licensed
software.

As Perens summarizes, from the programmer’s standpoint, these are the rights when
using Open Source programs:

! The right to make copies of the program, and distribute those copies.

! The right to have access to the software’s source code, a necessary

preliminary before you can change it

! The right to make improvements to the program4

• Licenses

There are many different types of licenses used by Open Source products. The most
common are5:

! Public Domain – A public-domain program is one upon which the author has

deliberately surrendered his copyright rights. It can’t really be said to come
with a license. A public domain program can even be re-licensed, its version
removed from public domain, with the author name being replaced by any
other name.

4 Source: bibliography 5 – page 172.
5 Source: bibliography 5 – page 182.

Open Technologies for An Open World Jean Binder

 5

! GPL (GNU General Public License) – the GPL is a political manifesto as well
as a software license, and much of its text is concerned with explaining the
rationale behind the license. GPL satisfies the Open Source Definition.
However, GPL does not guarantee the integrity of the author’s source code,
forces the modifications to be distributed under the GPL and does not allow
the incorporation of a GPL program into a proprietary program.

! LGPL (GNU Library General Public License) – The LGPL is a derivative of the

GPL that was designed for software libraries. Unlike the GPL, a LGPL
program can be incorporated into a proprietary program.

! X, BSD and Apache – These licenses let you do nearly anything with the

software licensed under them. This is because their origin was to cover
software funded by monetary grants of the US government.

! NPL (Netscape Public License) – This license has been prepared to give

Netscape the privilege of re-licensing modifications made to their software.
They can take those modifications private, improve them, and refuse to give
the result to anybody (including the authors of the modifications).

! MPL (Mozilla Public License) – The MPL is similar to the NPL, but does not

contain the clause that allows Netscape to re-license the modifications.

License Can be mixed

with non-free
software

Modifications
can be taken
private and not
returned to
their authors

Can be re-
licensed by
anyone

Contains
special
privileges for
the original
copyright
holder over the
modifications

Public Domain √ √ √
GPL
LGPL √
BSD √ √
NPL √ √ √
MPL √ √
Table 1 – Comparison of Open Source licensing practices6

• Open Source software engineering

The traditional software engineering process generally consists of marketing
requirements, system-level design, detailed design, implementation, integration, field-
testing, documentation and support. An Open Source project can include every
single one of these elements:

! The marketing requirements are normally discussed by using a mailing list or

newsgroup, where the needs from one member of the community are
reviewed and complemented by the peers. Failure to obtain consensus results
in “code splits”, where other developers start releasing their own versions.

6 Source: Bibliography 5, page 185

Open Technologies for An Open World Jean Binder

 6

! There is usually no system-level design for a hacker-initiated Open Source

development. A basic design allows the first release of code to be built, and
then revisions are made by the community. After some versions, the system
design is implicitly defined, and sometimes it is written down in the
documentation.

! Detailed design is normally absent of pure open source initiatives, mostly

because most of the community is able to read the code directly, interpret the
routines, functions and parameters, and modifying them as required. This
makes further development more difficult and time-consuming.

! Implementation is the primary motivation for almost all Open Source software

development effort ever expended. It is how most programmers experiment
with new styles, ideas and techniques.

! Integration usually involves organizing the programs, libraries and instructions

in such a way they can be used by users in other systems and equipments to
effectively use the software.

! Field-testing is one of the major strengths of Open Source development.

When the marketing phase has been effective, many potential users are
waiting for the first versions to be available, and willing to install them, test and
make suggestions and correct bugs.

! The documentation is usually written in a very informal language, free style

and usually funny way. Often websites are created to allow the documentation
to be provided and completed by the user community, and becomes a
potential source for examples, “tips and tricks”. One of the brightest examples
is the online documentation for PHP7.

! The support is normally provided via FAQS and discussion lists or even by the

developers themselves by e-mail, in a “best effort” basis, depending on their
availability, willingness and ability to answer the question or correct the
problem. The lack of official support can keep some users (and many
companies) away from Open Source programs, but it also creates
opportunities for consultants or software distributors to sell support contracts
and/or enhanced commercial versions.

The commercial versions of Open Source software (like BSD, BIND and Sendmail)
often use the original Open Source code, developed using the hackers’ model, later
refined by most of the phases described above.

• Open-source cycle

Many Open Source software start with an idea, discussed via the Internet, developed
by the community, implemented as first draft versions, and consolidated into final
versions after a lot of debugging. After this final software starts to be used globally,

7 www.php.net

Open Technologies for An Open World Jean Binder

 7

and interesting companies, the authors may decide to start receiving some financial
compensation for their hard work.

Then an organization may be created, or some existing company can start to
distribute the product alone or bundled with other similar pieces of software.
Sometimes, after a reasonable funding is raised and more development is done (now
remunerated) a commercial version of the product may be released, often with more
functionality than the free version, and sometimes without the source code being
generally distributed. This is attributed to the difficulty of small companies to remain
profitable by distributing only open source software.

• Open Source Science

As argued by DiBona, Ockman and Stone8, “Science is ultimately an Open Source
enterprise. The scientific method rests on a process of discovery, and a process of
justification. For scientific results to be justified, they must be replicable. Replication
is not possible unless the source is shared: the hypothesis, the test conditions, and
the results. The process of discovery can follow many paths, and at times scientific
discoveries do occur in isolation. But ultimately the process of discovery must be
served by sharing information: enabling other scientists to go forward where one
cannot; pollinating the ideas of others so that something new may grow that
otherwise would not have been born.”

Ultimately, the Open Source movement is an extension of the scientific method,
because at the heart of the computer industry is computer science. Computer
science differs from all other sciences, by having one means of enabling peers to
replicate results: share the source code. To demonstrate the validity of a program,
the means to compile and run the program must be provided.

Himanen considers that the scientists have developed this method “not only for
ethical reasons but also because it has proved to be the most successful way of
creating scientific knowledge. All of our understanding of nature is based on this
academic or scientific model. The reason why the original hackers’ Open Source
model works so effectively seems to be – in addition to the facts that they are
realizing their passions and are motivated by peer recognition, as scientists are also
– that to a great degree it confirms to the ideal open academic model, which is
historically the best adapted for information creation”9.

1.3.2. The Open Standards

One of the important factors in the success of the Internet comes from the
"governance mechanisms" (rather than regulation) that guide its use and evolution, in
particular, the direct focus on inter-connection and interoperability among the various
constituent networks.

8 See bibliography 5 – Introduction.
9 See bibliography 4, page 69

Open Technologies for An Open World Jean Binder

 8

• Standards

The standards are fundamental for the network economy. They allow the companies
to be connected by establishing clear communication rules and protocols. For
manufacturing networks, composed by the company with the product design, the
suppliers of different components and the assembly lines, standards guarantee the
compatibility of all the different parts in the production process. In the information and
technology networks, the standards guarantee the compatibility of the infrastructure
components analysed in the first chapter – hardware, operating systems and
application software – and the interoperability of the companies via the Internet with
clear network protocols.

Standardization is by definition a political, economical and technological process
aiming to establish a set of rules. These are documented agreements containing
technical specifications or other precise criteria to be used as rules, directions or
definitions. Thus, equipments, products, processes and services based in the same
set of rules are fully compatible with each other.

• De facto or De jure

Standards are normally classified according to their nature. De facto standards are
products and protocols which conquer the market by establishing a network of
interconnected and compatible products, and gaining recognition from the
consumers. An example is the set of de facto standards built around the IBM PC
specification.

Figure 2 – Examples of de facto standards and their connectivity

De facto standards are normally preferred by companies because they don’t need to
follow a complex and time-lengthy process for its validation. Often – as the case of

PC

Intel
processors

Windows

Peripherals

Mouse

Video

Cards

Memory

Word

Excel
Mac OS

Mac

Peripherals
Printer

Mouse

Open Technologies for An Open World Jean Binder

 9

Windows – they are accepted by the market even without being elaborated by
scientific process, and without strong R&D investments. These are also the reasons
by which they are not easily accepted by normalisation organisations, by the
scientific institutions and by the academic circle.

By opposition, de jure standards are often based on a new technology, created by a
company that accept to publish their concepts and definitions for a review of the
academic and scientific communities, and be officially approved by a normalisation
institution. A good example is the OSI standard and the protocols compatible with its
different tiers (see the Figure 14 on page 42).

Some of the main motivations for this are the ability to compete with existing
dominant standards, to easily found a cooperation network of software and hardware
suppliers, to obtain credibility from the academic world and consequently gathering
the cooperation from the students community.

A good practice from the really independent and non-profit normalisation
organisations is to only accept to recognise open standards. This is necessary to
avoid the formation of monopolies and unfair commercial practices by the royalty-
owners. This has recently been contested when standards for web services have
been analysed.

De facto standards De jure standards
Strengths:
- Quickly developed
- Optimal solution for the original goal

Weaknesses:
- Lengthy development
- Solution can be used beyond the

original goal
- Compromise of technical choices

Weaknesses:
- Short-sighted
- Not clearly defined
- Stimulates monopolies (by copyrights)
- Multiple solutions for the same type of

applications

Strengths:
- Long term analysis by experts
- Clear and complete definitions
- Stimulates competition
- Standard controlled by independent

organizations rather than companies
- Possibility of independent

certifications
Table 2 – Comparison between de facto and de juri standards10

• Mare liberum or Mare clausum

One standard is known as proprietary when it has been developed by a company,
which remains the owner of royalties that limit the usage of the standard
specifications by the payment of licence fees.

The Open Standards specifications are open to the public and can be freely
implemented by any developer. Open standards are usually developed and
maintained by formal bodies and/or communities of interested parties, such as the
Free Software/Open Source community. Open standards exist in opposition to the
proprietary standards and work to ensure that the widest possible group of

10 Source: Bibliography 27, page 5

Open Technologies for An Open World Jean Binder

 10

contemporary readers may access a publication. In a world of multiple hardware and
software platforms, it is virtually impossible to guarantee that a given electronic
publication will retain its intended look and feel for all viewers, but open standards at
least increase the likelihood that a publication can be opened in some form.

From a business perspective, open standards help to ensure that product
development and debugging occurs quickly, cheaply and effectively by dispersing
these tasks among wide groups of users. Open standards also work to promote
customer loyalty, because the use of open standards suggests that a company trusts
its clients and is willing to engage in honest conversations with them. Criteria for
open standard products include: absence of specificity to a particular vendor, wide
distribution of standards, and easy and free or low-cost accessibility.

• Protocols

A protocol is the special set of rules used by different network layers, allowing them
to exchange information and work cohesively. In a point-to-point connection, there
are protocols between each of the several layers and each corresponding layer at the
other end of a communication.11

The TCP/IP protocols (TCP, IP, HTTP…) are now quite old and probably much less
efficient than newer approaches to high-speed date networking (e.g. Frame Relay or
SMDS). Their success stems from the fact that the Internet is often today the only
possible outlet that offers a standardized and stable interface, along with a deliberate
focus on openness and interconnection. This makes the Internet extremely attractive
for very different groups of users, ranging from corporations to academic institutions.
By contrast with traditional telecommunications networks, the rules governing the
Internet focus on interconnection and interoperability, rather than attempting to
closely define the types of applications that are allowed or the rate of return permitted
to its constituents.12

• Architectures or Platforms

Architecture is a term applied to both the process and the outcome of thinking out
and specifying the overall structure, logical components, and the logical
interrelationships of a computer, its operating system, a network, or other conception.
Architectures can be specific (e.g. IBM 360, Intel Pentium) or reference models (e.g.
OSI). Computer architectures can be divided into five fundamental components (or
subsystems): processing, control, storage, input/output, and communication. Each of
them may have a design that has to fit into the overall architecture, and sometimes
constitute an independent architecture13.

As it will be exploited in the chapter 2.2.1 (z/VM and z/OS), the usage of open
architectures – even when maintained by commercial companies - can bring many
technical advantages to the suppliers of the building blocks (Software, hardware and
network components) and mainly to the user community, which can profit from a
large network of compatible components, ensuring an independence and favouring

11 Source: www.whatis.com
12 Source: bibliography 62
13 Source: www.whatis.com

Open Technologies for An Open World Jean Binder

 11

concurrence, creativity and innovation. The economic potential will be analysed in
details on the chapter 6.3 (Feedback).

The term platform may be used as a synonym for architecture, and sometimes may
be used to designate their practical implementations.

• Certification

Certify is to validate that products, materials, services, systems or persons are
compliant to the standard specifications. One chapter of the standard definitions is
always dedicated to the certification steps to be performed, and the specifications to
be verified.

The certification process may be performed by any entity. However, it’s normally
performed by independent organizations as it may be expensive and requires
specialized technological knowledge.14

14 Source: Bibliography 27, page 6

Open Technologies for An Open World Jean Binder

 12

Part I – Open Technologies
“It’s the question that drives us. The question that brought you here. You know the question,

 just as I did.” Trinity in The Matrix

Open Technologies for An Open World Jean Binder

 13

2. Open Infrastructure

“Technology is neither good nor bad, nor is it neutral” – Melvin Kranzberg

According to Patrick Gerland, “the three essentials of computer technology are:
hardware - the physical machinery that stores and processes information -, software -
the programs and procedures that orchestrate and control the operation of hardware
- and people who know what the hardware and software can do and who accordingly
design and implement applications that exert appropriate commands and controls
over hardware and software to achieve desired results”.15

Despite the broad discussion about open source and its influence on the evolution of
hardware and software, there’s a general lack of knowledge about the different types
of operating systems, their original and current targets, and their relationship with the
hardware platforms and architectures. For a better understanding of the further
topics, let’s start by discussing this infrastructure and analyse the status of the
hardware and basic software. This analysis will also solidify the definition of
architecture, standards and protocols, to be used on the following chapters. We will
see, for example, that new concepts as Open Source and ASP are largely inspired in
their parents Open Systems and Time Sharing.

The hardware and software components are sometimes generically referred to as
middleware.

2.1. Hardware

Hardware is a broad term. It covers all the equipment used to process information
electronically, and it’s traditionally divided into two main categories: computers and
peripherals16. In this section, we will concentrate our analysis in the evolution of the
computers, from owned machines into commodities. Peripheral references to the
peripherals will be done. Let us consider the division of the computer into servers and
clients, discuss the traditional server families, and the new concept of servers. After,
we will briefly analyse the machines in the client-side.

2.1.1. Traditional Server Families

In the beginning, they were simply called computers. And they were large-scale
computers. In the mid-1980’s, after the surge of the personal computers, we started
to classify the computers according to their capacity, their price, their “original” goal
and their target users. This classification remained until the end of the 1990s, and the
three different families will now be briefly described.

15 See bibliography 26
16 For a more complete description, see http://www.wikipedia.org/wiki/Computer.

Open Technologies for An Open World Jean Binder

 14

• Mainframes

Let’s not talk about the big computers filling entire rooms, weighting tons and
composed by valves17. This is not a mainframe any more, for a long time. Let’s think
about relatively small servers (they are often not larger than a fridge) with big power
capacity, enough to run online applications for thousands of users spread over
different countries, and to process batch jobs which can process millions of nightly
database updates. They have never been sexy (and this was not the goal: we are
talking about a period between 1970 and 1985, when graphics, colours, sound and
animation were not part of the requirements for a professional computer application)
and today it seems that the only alternative for them to survive is to mimic and co-
operate with open systems environments.

Usually mainframe applications are referred to as “legacy” (“Something received from
the past18”). One can argue the usage of this term19, mainly because of the
undeniable stability and performance of these machines and considering that most of
the core applications for big companies are still processed using mainframe

computers, connected with computers from other
platforms to get profit from a better user interface.

Current mainframe brands are IBM zSeries, Hitachi M-
Series, Fujitsu-Siemens PrimePower 2000 and BS2000
and Ahmdal Millenium20. The term mainframe is also
being marketed by some vendors to designate high-end
servers, which are a direct evolution from the mid-range
servers, with a processing capacity (and price) aiming to
compete with the traditional mainframes.

Figure 3 – IBM ZSeries 900

• Mid-range servers

This is a difficult assumption to make. The capacity of the machines in this category
is increasing fast, and they are already claiming to be high-end servers, and winning
market share from the mainframes. Let’s consider it a separate category, for the
moment.

Once upon a time, there were the minicomputers21. They used to fill the mid-range
area between micros and mainframes. As of 2001, the term minicomputer is no
longer used for the mid-range computer systems, and most are now referred to
simply as servers22. Mid-range servers are machines able to perform complex

17 To understand the computer history from the real beginning, please refer to
http://www.sysprog.net/history.html. To see pictures from some old mainframes see
http://www.piercefuller.com/collect/main.html.
18 Source: Webster's Revised Unabridged Dictionary, © 1996, 1998 MICRA, Inc.
19 The group bit.listserv.ibm-main is the mainframe discussion list by excellence. When looking for the
term legacy (e.g.: http://groups.google.be/groups?q=legacy+group:bit.listserv.ibm-main) we may find
more than a thousand posts.
20 Several manufacturers produced mainframe computers in the 1960s and 1970s: Burroughs, Control
Data, General Electric, Honeywell, NCR, RCA, and Univac – source: wikipedia.
21 Some examples in http://www.piercefuller.com/collect/mini.html. A complete description may be
found in http://www.wikipedia.org/wiki/Minicomputer.
22 A complete description may be found in http://www.wikipedia.org/wiki/Minicomputer.

Open Technologies for An Open World Jean Binder

 15

processing, with distributed databases, multi-processing and
multi-tasking, and deliver service to the same number of users
than a high-end server, but with lower cost and often with an
inferior level of protection, stability and security.

The main suppliers in this area are HP and Sun.

Figure 4 – HP RISC rp8400

• Low-range servers

Initially the microcomputers were used as desktop, single-user machines. Then they
started to assume functions from the minicomputers, like multi-tasking and multi-
processing. Nowadays they can provide services to several users, host web
applications, function as e-mail and database servers. Initially each server was used
for a different function, and they were connected via the network. This is called multi-
tier server architecture. With the evolution of the processing speed, today each
server may be used for several functions.

They may also work as metaframes, providing service to
users connected via client or network computers. All the
applications run in the server side (that is required to
have a very good processing capacity), which exchange
the screens with the clients (that can be relatively slow).

There are several suppliers in this area, like Dell and
Compaq.

Figure 5 – DELL Poweredge 1600SC

Figure 6 – Traditional Server families23

23 The throughput represents the capacity of one determined environment to process several tr
ansactions, or to serve several users, by keeping the same performance level.

Throughput

Cost

Mainframes

Midrange servers

Low-range servers

Open Technologies for An Open World Jean Binder

 16

2.1.2. Servers – The new generation

The classification categories discussed before are becoming more difficult to define
and the division lines are blurring. The new generation of servers span a large range
of price and processing capacity, starting by low-entry models, until powerful high-
end servers, which can be tightly connected into clusters. This methodology is
implemented – in different ways – by the most part of the hardware suppliers in the
server market.

Figure 7 – The new generation of servers

The differences between the entry-level and high-end servers depend on the
architecture and the supplier. They may imply the number of parallel processors, the
type and capacity of each processor, the memory available, cache, and connections
with the peripherals. The clusters are normally used for applications demanding
intensive calculations, and are composed by several servers connected by the usage
of high-speed channels (when they are situated in the same space) or high-speed
network links (when the servers are geographically dispersed to provide high
availability in cases of natural disasters). There are many different ways to implement
the clusters to obtain a single point of control and maintenance, treating the cluster
almost as a single server – without creating a single point of failure, which could
imply the complete unavailability of the cluster in case of problems with one of the
elements.

Estimate the throughput for future applications is only possible with a good capacity
planning, prepared by experimented specialists. To find a server – as performance
tests with the real charge are quite difficult to be elaborated - there are several
benchmarks, organized by recognized independent companies, each one with a
clear advantage for a different supplier. As the cost is extremely important - and
when the hardware supplier participates in the capacity planning – a Service Level
Agreement (SLA) may specify guarantees that the capacity installed will satisfy the
estimated demand.

Cost

Entry
Level

Throughput

High-end
Server

Cluster

Open Technologies for An Open World Jean Binder

 17

However, another differentiating factor, which is gaining importance nowadays, is the
openness of the hardware and operating systems. This will be largely exploited
further in this document.

2.1.3. Autonomic grid on demand

The current challenge, in the quest for the holy server, is to build flexible, scalable
and resilient infrastructures, able to respond to unexpected surges in traffic and use.
The solution may be found by implementing concepts like grid computing and
autonomic computing, which are highly dependent on open standards and tightly
related to open source.

• Grid Computing

Grid computing24 is a new, service-oriented architecture that embraces
heterogeneous systems and involves yoking together many cheap low-power
computers - dispersed geographically - via open standards, to create a system with
the high processing power typical of a large supercomputer, at a fraction of the price.
The goal is to link – mainly through the Internet – computers and peripherals, by
cumulating their processing and stocking capacities. All the connected systems may
then profit from the set of assembled resources – like processing capacity, memory,
disk, tapes, software and data – that are global and virtual at the same time.25

The challenges are to connect different machines and standards, to develop software
able to manage and distribute the resources over the network, to create a
development platform enabling programs to make profit of the parallel and distributed
tasks, security issues (authentication, authorisation and policies) and to develop
reliable and fast networks.

The basic principle is not new, as the HPC (high performance computing) technology
is already used in academic and research settings, and the peer-to-peer has already
been used to create a large network of personal computers (e.g. SETI@home). The
target now is to expand this technology to the business area via associations like the
Global Grid Forum (assembling more than 200 universities, laboratories and private
companies).

Another initiative is the Globus project, formed by many American research institutes,
responsible for Globus toolkit, which uses Open Source concepts for the basic
software development, and has created the Open Grid Services Architecture
(OGSA), a set of open and published specifications and standards for grid computing
(including SOAP, WSDL and XML). The OGSA version 1.0 has been approved in
December 2002. Other similar projects are Utility Computing (HP) and N1 (Sun)26.

24 For more information on grid computing: http://zdnet.com.com/2100-1105-863783.html (Globus
protocols)
25 Source: bibliography 36
26 Source: Datanews n°03, 24/01/2003. More references may be found in the Web:
www.gridforum.org
www.globus.org
www.gridcomputing.com
www.gridpartners.com

Open Technologies for An Open World Jean Binder

 18

With the costs to acquire, deploy, and maintain an expanding number of servers
weighing down potential productivity gains, the market is shifting toward various
concepts of service-centric computing. This may hold deep potential to not only lower
the capital and operational costs of a data centre, but also to impart that
infrastructure with the increased availability and agility to respond to an ever-
changing business environment.

• Autonomic Computing27

As IT systems become more complex and difficult to maintain, alternative
technologies must manage and improve its own operation with minimal human
intervention. Autonomic computing is focused in making software and hardware that
are self-optimising28, self-configuring29, self-protecting30 and self-healing31. It is
similar to the grid concepts, by embracing the development of intelligent, open
systems that are capable of adapting to varying circumstances and preparing
resources to efficiently handle the workloads placed upon them. Autonomic
computers aren’t a separate category of products. Rather, such capabilities are
appearing in a growing number of systems.

The objective is to help companies more easily and cost-effectively manage their grid
computing systems. It’s expected that when autonomic computing reaches its full
potential, information systems will run themselves based on set business policies and
objectives. The implementation of such a system start with a trial phase, in which the
system suggests actions and then wait for approval. After a fine-tuning of the rules,
the system may run unattended.

It’s believed that only a holistic, standards-based approach can achieve the full
benefits of autonomic computing. Several standards bodies – including the Internet
Engineering Task Force, Distributed Management Task Force and Global Grid Forum
– are working together with private companies to leverage existing standards and
develop new standards where none exist. Existing and emerging standards relevant
to autonomic computing include:
! Common Information Model
! Policy, Simple Network Management Protocol (IETF)
! Organisation for the advancement of structured information standards
! Java management extensions
! Web Services Security

www.globusworld.org
www.gridtoday.com
27 The term “Autonomic” comes from the autonomic nervous system, which controls many organs and
muscles in the human body.
28 Self-optimising refers to the ability of the IT environment to efficiently maximize resource allocation
and utilization to meet end users’ needs with minimal human intervention.
29 With the ability to dynamically configure itself on the fly, an IT environment can adapt immediately –
and with minimal human intervention – to the deployment of new components or changes in the IT
environment.
30 A self-protecting environment can detect hostile or intrusive behaviour as it occurs and take
autonomous actions to make itself less vulnerable to unauthorized access and use, viruses, denial-of-
service attacks and general failures.
31 Self-healing environments can detect improper operations and then initiate corrective action without
disrupting system applications.

Open Technologies for An Open World Jean Binder

 19

One example of current technologies using autonomic components is disk servers
with predictive failure analysis and pre-emptive RAID reconstructs, which are
designed to monitor the system health and to detect potential problems or systems
errors before harming the data. Performance optimisation is also obtained via
intelligent cache management and I/O prioritisation32.

2.1.4. Clients

• Desktops (and laptops)

In the beginning of the personal computers, hobby was the main objective, and there
were several different platforms (Amiga, Commodore, TRS80, Sinclair, Apple, among
others) completely incompatible. BASIC33 was the common language, although with
different implementations. Then, in 1981, IBM created the PC – the first small
computer to be able to run business applications - and in 1984, Apple released the
Macintosh – the first popular graphical platform. The era of microcomputers started.

The natural evolution of the microcomputers, today’s desktops are able to run
powerful stand-alone applications, like word processing and multimedia production.
They are normally based on Intel or Macintosh platforms and used by small
businesses or home users. They are much more powerful when connected to one or
more servers, via network or the Internet. They become clients, and can be used to
prepare and generate requests that are processed by the servers, and then receive,
format and display the results.

Most of the desktop market is dominated by computers originated from the IBM PC
architecture, built from several suppliers (and even sold in individual parts) around
Intel and AMD processors. Apple is also present – with a different architecture -
traditionally in the publishing and multimedia productions.

Figure 8 – Desktop x Network computers

32 More information can be obtained on the internet: www-3.ibm.com/autonomic/
33 BASIC stands for Beginner’s All-purpose Symbolic Instruction Code, and is an easy-to-learn
programming language, without a good logical structure.

Manageability

Personalisation
Level

Desktop
Computers

Network
Computers

Open Technologies for An Open World Jean Binder

 20

• Network Computing

Recent evolutions from the desktops, the Network Computers (also called WebPC or
NetPC) are also used as clients, with less power and more flexibility. Normally these
computers have built-in software, which is able to connect to the network and fetch
the needed applications from the servers, or simply use the applications running on
the servers themselves.

The main objective is to allow shops and sales persons to work from anywhere in the
world in the same way, with the same profile, even if changing the hardware
interface. It also allows a better level of control over personalization, as all the
information is always stored in the server, the client working simply as the interface.

Main suppliers are IBM and Compaq, with network computers working as PC clients,
and Citrix with a proprietary client able to connect only to Citrix servers and obtain a
perfect image of PC client applications via the network. Similar technology can be
found under the names “thin clients” and “smart display”.

To support the development of network computing, the company Sun developed a
new language (Java34), aiming to guarantee the independence of the hardware
equipment or platform by the usage of Virtual Machines35.

• Pervasive Computing

The idea is to connected small devices than laptops to the network. The PDAs are
largely used today, and have the capacity to work in network, even if the
communication costs avoid many to use them to send e-mails and to connect to the
Internet.

With the decreasing size of the chips, and with the development of wireless protocols
– like bluetooth and WiFi - some technology “hype-makers” are trying to convince the
general public that they need every single appliance connected to the network.
Although with some interesting applications, most of them are simply gadgets. With
the current economic crisis, there is a low probability that such products will have a
viable commercialisation soon.

Some companies are using these technologies in warehouse management systems,
to reduce costs and increase the control on stock and product tracing. Also current is
the usage of Linux in set-top boxes, able to select TV channels, save programs in
hard disks for later viewing, filter channel viewings according to license keys.

See also chapter 2.3.4 (Trend: Open Spectrum).

34 See chapter 3.2.1 on page 61
35 Source: bibliography 27

Open Technologies for An Open World Jean Binder

 21

2.2. Operating Systems

As we already discussed, hardware is the equipment used to process information. An
Operating System is the system software responsible to manage the hardware
resources (memory, Input/Output operations, processors and peripherals), and to
create an interface between these resources and the operator or end-user36.

Originally, each hardware platform could run its own operating system family. This is
not true any more. Here we are going to briefly analyse some examples of well-
known operating systems, and present some historical facts related to standards,
architectures and open source. Later we are going to discuss the initial dependence
between the operating systems and the architecture, and how this has changed.

2.2.1. z/VM and z/OS

With a history started in 1964, IBM mainframe
operating systems are currently z/VM and z/OS
(a third one, VSE/ESA37, is only kept for
compatibility issues). They share the same
architecture (currently called z/Architecture38)
and their main characteristics are:

! z/VM39 was originally built to ease the
machine resources sharing by creating
simulated computers (virtual machines), each
running its own operating system40.

! z/OS41 - has always been the operating
system used by large IBM systems, offering a
great level of availability and manageability.

• Architecture

IBM has been the leader of the mainframe commercial market since the very
beginning, with strong investments in R&D and marketing strategies, and with a
determination to use common programming languages (like COBOL) in the conquest
of programmers and customers. One key factor for IBM’s success is standardization.
In the 1950s, each computer system was uniquely designed to address specific
applications and to fit within narrow price ranges. The lack of compatibility among
these systems, with the consequent huge efforts when migrating from one computer

36 For a more complete description of the operating systems concept and their history, please refer to
http://www.wikipedia.org/wiki/History_of_operating_systems
37 VSE/ESA stands for Virtual Storage Extended/ Enterprise System Architecture
38 The "z" stands (according to IBM) for "zero down-time".
39 VM stands for “Virtual Machine”
40 The initial interest was to create a handful of virtual machines, to run DOS/VSE systems, and
hundreds of machines given to the users for word processing and other applications with a low level of
data sharing.
41 Z/OS is still commonly called MVS – which stands for “Multiple Virtual Storage” - (despite of IBM
marketing tentative of renaming it to OS/390 and now z/OS.

Open Technologies for An Open World Jean Binder

 22

to another, motivated IBM to define a new ”architecture” as the common base for a
whole family of computers. It was known as the System/360, announced on April
196442, which allowed the customers to start using a low-cost version of the family,
and upgrade to larger systems if their needs grew. Scalable architecture completely
reshaped the industry. This architecture introduced a number of the standards for the
industry - such as 8-bit bytes and the EBCDIC character set43 - and later evolved to
the S/370 (1970), 370-XA (1981), ESA/370 (1988), S/390 (1990) and z/Architecture
(2000). All these architectures were backward compatible, allowing the programs to
run longer with less or no adaptation, while convincing the customers to migrate to
the new machines and operating systems versions to profit from new technologies.

The standardization of the hardware platforms, by using a common architecture,
helped to unify the efforts from the different IBM departments and laboratories spread
over the world. The usage of a common set of basic rules was also fundamental in
the communication among the hardware and software departments, which allowed
the existence of the three different operating system families, able to run in the same
hardware.

• Relative Openness

This architecture is proprietary (privately owned and controlled - the control over its
use, distribution, or modification is retained by IBM), but its principles and rules are
well defined and available to the customers, suppliers and even the competitors44.
This openness allowed its expansion by:

! Hardware - Other companies (OEM - Original Equipment Manufacturer)

started to build hardware equipment full compatible with the IBM architecture
(thus allowing its use together with IBM hardware and software), and often
with advantages on pricing, performance or additional functions. This gave a
real boost on the IBM architecture, by giving the customer the advantage of
having a choice, while enforcing the usage of its standards and helping it to
sell even more software and hardware.

! Software – Initially IBM was dedicated to building operating systems,

compilers and basic tools. Many companies (ISV - Independent Software
Vendors) started to develop software to complement this basic package,
allowing the construction of a complete environment. The end-user could then
concentrate in the development of its applications, while buying the operating
system and the complementary tools from IBM and the ISV.

! Services – As the IBM architecture became the standard for large systems,

consulting companies could then specialize in this market segment, providing
standard service offerings around the implementation of the hardware
components, operating systems and software. With the recent increase on the
demand for this type of service, mainly due to the Y2K problem, the Euro

42 “The “360” in the name referred to all points of a compass to denote universal applicability, a wide
range of performance and prices, and the “whole company” scope of the development effort” – See
bibliography 14.
43 EBCDIC is explained on page 80.
44 See online version on http://publibz.boulder.ibm.com/epubs/pdf/dz9zr000.pdf

Open Technologies for An Open World Jean Binder

 23

implementation and the outsourcing hype, most of the infrastructure services
in large environments have been done by external consultants45.

• The negative aspects

There’s also a dark side: several times, IBM has been accused of changing the
architecture without giving enough time to the competitors to adapt their hardware
and software. Only when the competition from other high-end servers suppliers
increased, IBM has been forced to review this policy, creating the concept of
“ServerPac”. The operating system started to be bundled with ISV software, giving
the user a certain guarantee of compatibility.

A second problem is the complete ownership of the standards, by IBM. Even if other
companies found good ways of implementing new technologies, thus improving the
quality of the service or the performance, they always needed to adapt their findings
to fit in the IBM architecture46. This limited the innovation coming from the OEM
companies as they could rarely think about improvements that would imply
architectural changes. On the other hand, the customers were never sure if the
changes imposed by IBM were really needed, or simply another way of forcing them
to upgrade the operating systems version or the hardware equipment with an obvious
financial benefit for IBM.

A third aspect is related to the availability of the code source of the operating
systems and basic software. Originally, IBM supplied the software with most part of
the source code and a good technical documentation about the software’s internal
structures. This gave the customers a better knowledge about the architecture and
the operating systems, allowing them to analyse problems independently, to drive
their understanding beyond the documentation, and to elaborate routines close to the
operating systems. After, they created the “OCO” (Object Code Only) concept, which
persists today. The official reason behind this was the difficulty for IBM to analyse
software problems, due to the increasing number of customers that started to modify
the IBM software to adapt them to local needs, or to simply correct bugs. In fact, by
hiding the source code IBM also avoided that customers discovered flaws and
developed interesting performance upgrades. This also helped to decrease the
knowledge level from the technical staff, which is limited today to follow the
instructions given by IBM, when installing and maintaining the software. The direct
consequence was a lack of interest for the real system programmers and students,
who have been attracted to UNIX and Open Source environments. A positive
consequence of the OCO policy is the quicker migration from release to release.
Since the code is not modified, but instead APIs (Application Programming
Interfaces47) can be used to adapt the system to each customer needs.

• Impacts

These factors were crucial to create a phenomenon called downsizing: Several
customers, unhappy with the monopoly in the large systems, and with the high prices
practiced by IBM and followed by the OEM and ISV suppliers, started to migrate their

45 Even with the recent reduction in the consultancy expenses, most of the essential activities – related
to the core business – have been “in-sourced back”, but the infrastructure remains externalised.
46 By the way, IBM was not interested in adapting its standards to improve the performance, as one of
its major financial benefits was from selling larger machines.
47 In the mainframe environment APIs are usually available in the form of “user exits”.

Open Technologies for An Open World Jean Binder

 24

centralized (also called enterprise) systems to distributed environments, by using
midrange platforms like UNIX. In parallel (as it will be discussed on chapter 2.2.2),
there were many developments of applications and basic software in the UNIX
platforms, the most important around the Internet. To counterattack, IBM decided to
enable UNIX applications to run in their mainframe platforms: MVS (the Open Edition
environment, now called UNIX System Services) and VM (by running Linux as guest
operating systems in virtual machines). IBM major effort today is to create easy
bridges between those application environments, and to convince the customers to
web-enable the old applications, instead of rewriting them.

Important is to notice that the standardisation on the hardware level was not
abstracted to the operating system level. As mentioned above IBM always
maintained three different operating systems, each one targeted to a different set of
customers. This was not always what IBM desired, and in every implementation of a
new architecture level (e.g. XA, ESA), the rumours were that the customers would be
forced to migrate from VM and VSE to MVS, which would become the only supported
environment. This is still true for the VSE (note that there’s no z/VSE announced yet),
but z/VM became a strategic environment allowing IBM to implement Linux in all
hardware platforms.

Usually, the mainframe implementations are highly standardized. As the
professionals in this domain understood the need for standards, the creation of
company policies is done even before installing the systems.

Open Technologies for An Open World Jean Binder

 25

2.2.2. UNIX®
"Unix was the distilled essence of operating systems, designed solely to be useful. Not to be

marketable. Not to be compatible. Not to be an appendage to a particular kind of hardware. Moreover
a computer running Unix was to be useful as a computer, not just a `platform' for canned `solutions'. It
was to be programmable - cumulatively programmable. The actions of program builders were to be no
different in kind from the actions of users; anything a user could do a program could do too...." (McIlroy

- Unix on My Mind)

An analysed by Giovinazzo, “while it may
seem by today’s standards that a universal
operating system like UNIX was inevitable,
this was not always the case. Back in that
era there were a great deal of cynicism
concerning the possibility of a single
operating system that would be supported
by all platforms. (…) Today, UNIX support

is table stakes for any Independent Software Vendor (ISV) that wants to develop an
enterprise class solution”48.
It may surprise some people but the conception of UNIX (MULTICS) started almost in
the same time than the IBM System/360, and the first UNIX edition was released just
after the IBM System/370, in November 197149. MULTICS was developed by the
General Electric Company, AT&T Bell Labs50 and the Massachusetts Institute of
Technology to allow many users to access a single computer simultaneously,
allowing them to share data and the processing cost. Bell Labs abandoned the
project and used some of MULTICS concepts to develop UNIX on a computer called
DEC PDP-7, predecessor of the VAX computers51.

• Portability

The “C” language has been created under UNIX and then - in a revolutionary exploit
of recursion - the UNIX system itself has been rewritten in “C”. This language was
extremely efficient while relatively small and started to be ported to other platforms,
allowing the same to happen with UNIX.

Besides portability, another important characteristic of the UNIX system was its
simplicity (the C logical structure could be learnt quickly, and UNIX was structured as
a flexible toolkit of simple programs). Teachers and students found on it a good way
to study the very principles of operating systems, while learning UNIX more deeply,
and quickly spreading UNIX principles and advantages to the market.

This helped UNIX to become the ARPANET (and later Internet) operating system by
excellence. The universities started to migrate from proprietary systems to the new
open environment, establishing a standard way to work and communicate.

48 See bibliography 13, page 15.
49 See bibliography 16, page 1-4.
50 http://www.bell-labs.com/history/unix/
51 See bibliography 5, page 23.

Open Technologies for An Open World Jean Binder

 26

• Distribution method

Probably one of the UNIX most innovations was its original distribution method.
AT&T could not market computer products so they distributed UNIX in source code,
to educational institutions, at no charge. Each site that obtained UNIX could modify
or add new functions, by creating a personalized copy of the system. They quickly
started to share these new functions and the system become adaptable to a very
wide range of computing tasks, including many completely unanticipated by the
designers.

Initiated by Ken Thompson52, students and professors from the University of
California-Berkeley continued to enhance UNIX, creating the BSD (Berkeley
Software Distribution) Version 4.2, and distributing it to many other universities. AT&T
distributed their own version, and were the only able to distribute commercial copies.

In the early 80s the microchip and local-area network started to have an important
impact on the UNIX evolution. Sun Microsystems used the Motorola 68000 chip to
provide an inexpensive hardware for UNIX. Berkeley UNIX developed built-in support
for the DARPA Internet protocols, which encouraged further growth of the Internet53.
“X Window” provided the standard for graphic workstations. By 1984 AT&T started to
commercialise UNIX. “What made UNIX popular for business applications was its
timesharing, multitasking capability, permitting many people to use the mini- or
mainframe; its portability across different vendor's machines; and its e-mail
capability”54.

• The UNIX wars

Several computer manufacturing companies55 - like Sun, HP, DEC and Siemens -
adapted AT&T and BSD UNIX distributions to their own machines, trying to seduce
new users by developing new functions to benefit from hardware differences. Of
course, the more differences between the UNIX distributions, more difficult to migrate
between platforms. The customers started to be trapped, like in all other computer
families.

As the versions of UNIX grew in number, the UNIX System Group (USG), which had
been formed in the 1970s as a support organization for the internal Bell System use
of UNIX, was reorganized as the UNIX Software Operation (USO) in 1989. The USO
made several UNIX distributions of its own - to academia and to some commercial
and government users –and then was merged with UNIX Systems Laboratories, to
become an AT&T subsidiary.

AT&T entered into an alliance with Sun Microsystems to bring the best features from
the many versions of UNIX into a single unified system. While many applauded this
decision, one group of UNIX licensees expressed the fear that Sun would have a
commercial advantage over the rest of the licensees.

52 One of the creators of UNIX, working for the AT&T Bell labs. Biography in http://www.bell-
labs.com/history/unix/thompsonbio.html, web site on http://www.cs.bell-labs.com/who/ken/.
53 See chapter 2.3.3
54 http://www.bell-labs.com/history/unix/business.html
55 http://www.unix.org/images/chronology_big.gif

Open Technologies for An Open World Jean Binder

 27

The concerned group, leaded by Berkeley, in 1988 formed a special interest group,
the Open Systems Foundation (OSF), to lobby for an "open" UNIX within the UNIX
community. Soon several large companies also joined the OSF.

In response, AT&T and a second group of licensees formed their own group, UNIX
International. Several negotiations took place, and the commercial aspects seemed
to be more important than the technical ones. The impact of losing the war was
obvious: important adaptations should be done in the complementary routines
developed, some functions – together with some advantages – should be
suppressed, some hardware innovative techniques should be abandoned in the
name of the standardization. When efforts failed to bring the two groups together,
each one brought out its own version of an "open" UNIX. This dispute could be
viewed two ways: positively, since the number of UNIX versions were now reduced to
two; or negatively, since there now were two more versions of UNIX to add to the
existing ones.

In the meantime, the X/Open Company – company formed in guise to define a
comprehensive open systems environment - held the centre ground. X/Open chose
the UNIX system as the platform for the basis of open systems and started the
process of standardizing the APIs necessary for an open operating system
specification. In addition, it looked at areas of the system beyond the operating
system level where a standard approach would add value for supplier and customer
alike, developing or adopting specifications for languages, database connectivity,
networking and connections with the mainframe platforms. The results of this work
were published in successive X/Open Portability Guides (XPG).

• The Single UNIX Specification56

In December 1993, one specification was delivered to X/Open for fast track
processing. The publication of the Spec 117057 work as the proper industry
supported specification occurred in October 1994. In 1995 X/Open introduced the
UNIX 95 brand for computer systems guaranteed to meet the Single UNIX
Specification. On 1998 the Open Group introduces the UNIX 98 family of brands,
including Base, Workstation and Server. First UNIX 98 registered products shipped
by Sun, IBM and NCR.

There is now a single, open, consensus specification, under the brand X/Open®
UNIX. Both the specification and the trademark are now managed and held in trust
for the industry by X/Open Company. There are many competing products, all
implemented against the Single UNIX Specification, ensuring competition and vendor
choice. There are different technology suppliers, which vendors can license and build
their own product, all of them implementing the Single UNIX Specification.

Among others, the main definitions under this specification on version 3 - which is a
result of IEEE POSIX, The Open Group and the industry efforts – are the definitions
(XBD), the commands and utilities (XCU), the system interfaces and headers (XSH)

56 From “The Authorized Guide to the Single UNIX Specification, Version 3” (http://www.unix-
systems.org/version3/theguide.html) and “The Open Group – History and timeline
(http://www.unix.org/what_is_unix/history_timeline.html).
57 There were 1170 interfaces in the complete specification when the work was done (926
programming interfaces, 70 headers, 174 commands and utilities). There are now more than 1170
interfaces in the specification as the review process shaped the document accordingly.

Open Technologies for An Open World Jean Binder

 28

and the networking services. They are part of the X/Open CAE (Common
Applications Environment) document set.

In November 2002, the joint revision to POSIX® and the Single UNIX® specification
have been approved as an International Standard58.

• Today

The Single UNIX Specification brand program has now achieved critical mass:
vendors whose products have met the demanding criteria now account for the
majority of UNIX systems by value. UNIX-based systems are sold today by a number
of companies59.

UNIX is a perfect example of a constructive way of thinking (and mainly: acting!), and
it proves that the academia and commercial companies can act together, by using
open standards regulated by independent organisations, to construct an open
platform and stimulate technological innovation.

Companies using UNIX systems, software and hardware compliant with the X/Open
specifications can be less dependent of the suppliers. Migration to another compliant
product is always possible. One can argue that, in cases of intensive usage of “non-
compliant” extra features, the activities required for a migration can demand a huge
effort.

58 Designated as ISO/IEC 9945:2002, the joint revision forms the core of The Open Group's Single
UNIX Specification Version 3 (IEEE 1003.1-2001, POSIX.1). More information on
http://www.iso.ch/iso/en/commcentre/pressreleases/2002/Ref837.html
59The systems include Solaris® from Sun Microsystems, HP-UX® from Hewlett-Packard, AIX® from
IBM, and Tru64 UNIX® from Compaq
Platform Vendors Supporting the Single UNIX Specification: Acer; Amdahl; Apple; AT&T GIS; Bull;
Convex; Cray; Data General; Compaq; Encore; 88 Open; Fuji Xerox; Fujitsu Ossi; Hal; Hewlett-
Packard; Hitachi; IBM; ICL; Matsushita; Mips ABI; Mitsubishi; Motorola; NEC; Novell/USL; Oki; Olivetti;
OSF; PowerOpen; Precision RISC; Pyramid; SCO; Sequent; Sequoia; Sharp; Siemens-Nixdorf; Silicon
Graphics; Sony; Sparc International; Stratus; Sun Microsystems; Tadpole; Tandem; Thompson/Cetia;
Toshiba; Unisys; Wang Labs.
ISVs and User Organizations Supporting the Common API Specification: AutoDesk; Banyan; Bellcore;
Bentley; Cadence; Cadre; Chorus; Computer Associates; DHL; EDS Unigraphics; Frame Tech;
Informix; Island Software; Lachman Tech; Locus; Lotus; McDonald's; Mentor; Oracle; Pencom
Systems; SDRC; Software AG; Shell Oil; Veritas; Wal-Mart; WordPerfect.
Source: http://www.unix.org/what_is_unix/single_unix_specification.html

Open Technologies for An Open World Jean Binder

 29

Figure 9 – UNIX Chronology60

60 Source: The Open Group (http://www.unix.org/images/chronology_big.gif)

Open Technologies for An Open World Jean Binder

 30

2.2.3. Linux
“Every good work of software starts by scratching a developer’s personal itch” – Eric Raymond

This discussion is not completely separated from
the previous one. Developed by Linus Torvalds,
Linux is a product that mimics the form and
function of a UNIX system61, but is not derived
from licensed source code. Rather, it was
developed independently by a group of
developers in an informal alliance on the net
(peer to peer). A major benefit is that the source
code is freely available (under the GNU
copyleft), enabling the technically astute to alter
and amend the system; it also means that there
are many, freely available, utilities and specialist
drivers available on the net.

• Brief Hacker History

The hackers – not to be confounded with the “crackers”62 – appeared in the early
sixties and define themselves as people who “program enthusiastically”63 with “an
ethical duty (…) to share their expertise by writing free software and facilitating
access to information and computing resources wherever possible”64. After the
collapse of the first software-sharing community65 - the MIT Artificial Intelligence Lab
- the hacker Richard Stallman quit his job at MIT in 1984 and started to work on the
GNU66 system. It was aimed to be a free operating system, compatible with UNIX.
“Even if GNU had no technical advantage over UNIX, it would have a social
advantage, allowing users to cooperate, and an ethical advantage, respecting the
user’s freedom”67. He started by gathering pieces of free software, adapting them,
and developing the missing parts, like a compiler for the C language and a powerful
editor (EMACS). In 1985, the Free Software Foundation68 has been created and by
1990, the GNU system was almost complete. The only major missing component
was the kernel.

In 1991, Linus Torvalds developed a free UNIX kernel using the FSF toolkit. Around
1992, the combination of Linux and GNU resulted in a complete free operating

61 Recent versions of Glibc include much functionality from the Single UNIX Specification, Version 2
(for UNIX 98).
62 In the mid-eighties the term “hacker” started to be misused to address the computer criminals. The
real hackers created the term “cracker” to apply to the virus writers and intruders, but the confusion
still exists in the media and general public.
63 The Jargon File, s.v. Hacker (www.tuxedo.org/~esr/jargon)
64 The Jargon File, s.v. Hacker Ethic
65 See bibliography 5, page 53.
66 The name GNU was chosen following a hacker’s tradition, as a recursive acronym for “GNU’s Not
UNIX”
67 Richard Stallman - bibliography 5, page 61.
68 FSF – A tax-exempt charity for free software development, distribution and services.

Open Technologies for An Open World Jean Binder

 31

system, and by late 1993, GNU/Linux could compete on stability and reliability with
many commercial UNIX versions, and hosted more software.

Linux was based on good design principles and a good development model. By
opposition to the typical organisation – where any complex software was developed
in a carefully coordinated way by a relatively small group of people – Linux was
developed by a huge numbers of volunteers coordinating through the Internet.

Portability was not the original goal. Conceived originally to run on a personal
computer (386 processor), later on some people ported the Linux kernel to the
Motorola 68000 series – used in early personal computers – using an Amiga
computer. Nevertheless, the serious effort was to port Linux to the DEC Alpha
machine. The entire code has been reworked in such a modular way that future ports
were simplified, and started to appear quickly.

This modularity was essential for the new open-source development model, by
allowing several people to work in parallel without risk of interference. It was also
easier for a limited group of people – still coordinated by Torvalds – to receive all
modified modules and integrate into a new kernel version69.

• To be or not to BSD

Besides Linux, there are many freely available UNIX and UNIX-compatible
implementations, such as OpenBSD, FreeBSD and NetBSD. According to Gartner,
“Most BSD systems have liberal open source licenses, 10 years' more history than
Linux, and great reliability and efficiency. But while Linux basks in the spotlight, BSD
is invisible from corporate IT”70. BSDI is an independent company that markets
products derived from the Berkeley Systems Distribution (BSD), developed at the
University of California at Berkeley in the 60's and 70's. It is the operating system of
choice for many Internet service providers. It is, as with Linux, not a registered UNIX
system, though in this case there is a common code heritage if one looks far enough
back in history. The creators of FreeBSD started with the source code from the
Berkeley UNIX. Its kernel is directly descended from that source code.

• (Dis)united Linux

Recursion or fate, the fact is that Linux history is following the same steps than UNIX.
As it was not developed using the source from one of the UNIX distributions, Linux
have several technical specifications that are not (and will probably never be71)
compliant with UNIX98. Soon, Linux started to be distributed by several different
companies worldwide – SuSE, Red Hat, MandrakeSoft, Caldera International / SCO
and Conectiva, to name some –, bundled together with a plethora of open source
software, normally in two different packages - one aiming at home users and another

69 A long-time kernel maintainer was Alan Cox, who transferred this task to the Brazilian Marcelo
Tosatti (source: ZDNet July, 11 2002)
70 See bibliography 40.
71 The theoretical paths needed to be followed by Linux to get a certification are exploited by Ian
Nandhra on http://lwn.net/1998/0611/standardseditorial.html

Open Technologies for An Open World Jean Binder

 32

for companies. In 2000, two standardization groups appeared - LSB72 and LI18NUX73
- and have incorporated under the name Free Standards Group, “organized to
accelerate the use and acceptance of open source technologies through the
application, development and promotion of interoperability standards for open source
development”74. Caldera, Mandrake, Red hat and SuSE currently have versions
compliant with the LSB certification75.

Still in an early format, the current standards are not enough to guarantee the
compatibility among the different distributions. In a commercial maneuver – to reduce
the development costs – SCO, Conectiva, SuSE and Turbolinux formed a consortium
called UnitedLinux, a joint server operating system for enterprise deployment. The
software and hardware vendors can concentrate on one major business distribution,
instead of certifying to multiple distributions. This is expected to increase the
availability of new technologies to Linux customers, and reduce the time needed for
the development of drivers and interfaces. Consulting companies can also
concentrate the efforts to provide more and new services.

However, Red hat – the dominant seller in the enterprise market segment – has not
been invited to join the UnitedLinux family before its announcement. Few expect it to
join now. Also missing are MandrakeSoft and Sun Microsystems76.

With the help from important IT companies, it’s expected from the Free Standards
Group the same unifying role than the one played by the Open Group, which was
essential for the UNIX common specification77. This is very important to give more
credibility for the companies willing to seriously use Linux on their production
environments. As in the UNIX world, the Linux sellers could still keep their own set of
complementary products, which would be one important factor to stimulate the
competition. The distributions targeting the home users can continue separated, by
promoting the diversity needed to stimulate creativity, and by letting the natural
selection chose the best software to be elected for enterprise usage. Darwin would
be happy. Also would the users.

• Servers and desktops78

Linux already proved to be a reliable, secure and efficient operating system, ranging
from low entry up to high-end servers. It has the same difficulty level than other UNIX
platforms, with the big advantage of being economically affordable – almost

72 Linux Standard Base (http://www.linuxbase.org/)
73 LI18NUX (Linux Internationalization Initiative) has later changed its name to OpenI18N (Open
Internationalization Initiative). This was done to better reflect the groups open source activities that go
beyond Linux (http://www.openi18n.org/charter/). The peculiar designation derives from the widely
used abbreviation I18N: the letters "i" and "n" of "internationalization" are separated by 18 letters.
74 Source: http://www.openi18n.org/press/FreeStandards/
75 Source: http://www.opengroup.org/lsb/cert/cert_prodlist.tpl (status: November 2002).
76 Source: ZDNet June 3, 2002
 (http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2868859,00.html)
77 See item “The Single UNIX Specification” on page 27.
78 I have based my analysis in this paragraph in articles from the DataNews publication - about Linux
experiences in Belgian and European companies - in several discussions with people using Linux as
desktops and servers, and in my own experience by installing Linux at home. An interesting article has
been written by Don Soegaard and can be found in bibliography 39.

Open Technologies for An Open World Jean Binder

 33

everybody can have it at home, and learn it by practice. However, is it technically
possible for everyone to install it and use it?

The main argument supporting all the open source software is that a good support
can be obtained from service providers, besides the help from the open source
community, by using Internet tools like newsgroups and discussion lists. Although,
our question may have two different answers: One for servers, other for clients.

It is certainly possible for companies to replace existing operating systems with Linux,
and the effort needed is mainly related to the conversion of the applications than to
the migration of the servers or the operating systems. Several companies have been
created using Linux servers to reduce their initial costs, and they worked with
specialized Linux people from the beginning. Most of the companies replacing other
platforms by Linux already have a support team, with a technological background,
responsible by the installation and maintenance of the servers. Part of this team has
already played with Linux at home and has learnt the basic knowledge. The other
part is often willing to learn it, compare with the other platforms, and to discover what
it has that is seducing the world.

The desktop users have a completely different scenario. This is because Linux is
based on a real operating system, conceived to be installed and adapted by people
with a good technical background, and willing to dedicate some time for this task.
The main goal of most of the people (except probably the hackers themselves)
installing Linux at home is to learn it, to play around, to compare with the other
systems. The Linux main objective (by using the recursion so dear to the hackers)
appears to be Linux itself. In its most recent releases, even if the installation process
is not difficult as before, simple tasks as adding new hardware, playing a DVD,
writing a CD or installing another piece of software, can quickly become nightmares.
Linux can’t yet match Windows on plug-and-play digital media or the more peripheral
duties.79 One should continue to be optimist and hope that the next versions will
finally be simpler. The open source community is working on it, via the creation of the
Desktop Linux Consortium80.

• Ubiquity … and beyond!

Linux is considered the only operating system that will certainly run on architectures
that have not yet been invented81. Four major segments of Linux key marketplaces
are:
! Workload consolidation - One of the capabilities of Linux is that it makes it very

easy to take distributed work and consolidate it in larger servers. Mainframes
and some large servers support hundreds of thousands of virtual machines,
each one running one copy of Linux.

! Clusters – Linux performs very well when connected in clusters (due to its

horizontal scalability), like the big supercomputing clusters existing in
universities and research labs.

79 Source : bibliography 35
80 Source: Datanews n°6, 14/02/2003, page 3
81 This paragraph has been adapted fro, a study performed by IBM, available at
(http://www.ibm.com/news/us/2001/08/15.html)

Open Technologies for An Open World Jean Binder

 34

! Distributed enterprise – The central management of geographically distributed
servers is among the chief growth areas for Linux.

! Appliances –Linux is found as an embedded operating system in all kinds of

new applications, like major network servers, file and print servers, and quite a
number of them new kinds of information appliances. It’s very cost effective,
reliable and fast. In addition, the open standards facilitate their operations.

Open Technologies for An Open World Jean Binder

 35

2.2.4. Windows

The first Microsoft’s product – in 1975 –
was BASIC82, installed in microcomputers
used by hobbyists. In 1980, IBM started to
develop the personal computer (PC) and
invited Microsoft to participate in the

project by creating the operating system. Microsoft bought, from a small company
called Seattle Computer, a system called Q-DOS83, and used it as a basis for MS-
DOS, which became the operating system of choice, distributed by IBM as PC-
DOS.84 By 1983, Microsoft announced their planning to bring graphical computing to
the IBM PC with a product called Windows. As Bill Gates explains, “at that time two
of the personal computers on the market had graphical capabilities: The XEROX Star
and the Apple Lisa. Both were expensive, limited in capability, and built on
proprietary hardware architectures. Other hardware companies couldn’t license the
operating systems to build compatible systems, and neither computer attracted many
software companies to develop applications. Microsoft wanted to created an open
standard and bring graphical capabilities to any computer that was running MS-
DOS”85.

• First steps

Microsoft worked together with Apple during the development of the Macintosh, and
created for this platform their two first graphical products: a word processor (Microsoft
Word) and a spreadsheet (Microsoft Excel). Microsoft also cooperated with IBM
during the development of OS/2, which was aimed to become the graphic
replacement for MS-DOS.

Using this knowledge, and a lot of ideas from the XEROX research, Microsoft release
the first version of Windows in November 198586. The impact of OS/2 was very
limited, as it did not provide full compatibility with the old MS-DOS software. On the
other hand, Windows was a large success mainly because it supported the existing
MS-DOS character-oriented applications, in parallel with exploiting the potentials
from the new graphical software.

Application support for Windows was initially sparse. To encourage earlier application
support, Microsoft licensed a free of charge runtime version of Windows to
developers, which made their programs available to end-users. This runtime version
allowed use of the application although it did not give the benefits that the full
Windows environment provided. With version 3.1, Windows acquired maturity,
reducing the incredible number of bugs - mainly related with the user interface, and

82 Microsoft didn’t create BASIC. It developed the interpreter able to run in microprocessors Intel 8080
(See bibliography 17). BASIC was created in the Dartmouth College by John Kemeny and Thomas
Kurtz, in 1964 (See bibliography 18, page 29)
83 Q-DOS stands for “Quick and Dirty Operating System”. Source: Bibliography 18.
84 The first IBM PC actually shipped with a choice of three operating systems: PC-DOS, CP/M-86 and
the UCSD Pascal P-system. Using strong licensing strategies, Microsoft convinced IBM to abandon
the other two. See bibliography 17, page 49.
85 In bibliography 17.
86 Complete list of versions and dates in http://www.computerhope.com/history/windows.htm

Open Technologies for An Open World Jean Binder

 36

with the constant need of rebooting the system - and with the wide availability of
graphic applications. Its popularity blossomed with the release of a completely new
Windows software development kit (SDK) - which helped software developers focus
more on writing applications and less on writing device drivers – and with the
widespread acceptance among third-party hardware and software developers. The
bugs are persistent, and today are the main source of virus by opening security
flaws.

• Different families with different editions

Microsoft decided to keep the compatibility with the MS-DOS applications to avoid
losing customers. However, this also avoided Windows desktop systems to be stable,
and reduced the pace of innovation. Microsoft then started to develop a completely
new desktop system from scratch, oriented to business customers that needed more
stability. After 1993 two different families of desktop operating systems co-existed:
the Windows 3x (that later evolved to Windows 9x and Windows Millennium),
descended from MS-DOS and the Windows NT (that later evolved to Windows2000),
completely built around the graphic interfaces and new hardware features. In 2001,
Microsoft abandoned the 3x family and used the base code from NT to create the
Windows XP, with two different packages and prices: one “edition” aimed for home
users, another for professional use87.

Figure 10 – Windows client evolution88

87 See the timeline on http://www.microsoft.com/windows/winhistoryprographic.mspx
88 Source: www.microsoft.com

Open Technologies for An Open World Jean Binder

 37

In July 1993, Microsoft inaugurated its Windows server family with the release of
Windows NT Advanced server 3.189. It was designed to act as a dedicated server (for
tasks as Application, Mail, Database and Communications Server) in a client/server
environment, for Novell NetWare, Banyan VINES, and Microsoft networks. The next
releases improved the connectivity with UNIX environments (3.5), integrated a web
server (4.0) and consolidated the web facilities with ASP (2000). To follow is the
Windows .NET server90, which aims to better exploit the XML Web services and the
.NET framework. The different editions for the server families are Standard,
Enterprise, Datacenter and Web91.

Figure 11 – Windows server evolution92

89 Although the first server operating system from Microsoft was LAN Manager.
90 Announced for final release in late 2002.
91 See http://www.microsoft.com/windows/winhistoryserver.mspx
92 Source: www.microsoft.com

Open Technologies for An Open World Jean Binder

 38

• Easy-to-use, easy-to-break

The main advantage of the windows families – over Linux and UNIX - is their easy
installation and operation. As we saw, Microsoft copied the concepts from Apple
Macintosh and always based their windows products in graphic interfaces, with
intuitive icons opening the doors for all the tasks, from running the applications to
configuring the hardware and changing the software options, colours and sounds.
This seems to be a major benefit for end users, that don’t need to bother with
learning the concepts of operating systems to be able to write a letter, scan some
photos, mix everything and print. The problems start to appear when something
changes, like the version of the operating system, a new hardware component or
simply when an inoffensive application is installed or removed from the computer.
These tasks often need an intervention from a specialist, or a complete reinstallation
of the windows system. This happens even with the recent XP releases, despite
Microsoft publicity stating the opposite.

Finally, the main technical advantages disappear, and only the market dominance,
compatibility of the document formats, and marketing strategies convince the user to
keep the windows system, rather than installing Linux or buying a Macintosh system.

• Embrace and Extend

Microsoft strategy always consisted in identifying the good opportunities, react
quickly and offer a solution (often without taking care of the quality) to conquer the
market and later improve it to keep the customers. Again, as it was the case for IBM
with the mainframes, marketing strategies revealed to be more important than
technological features, paving the way for “de facto” standards.

Windows is extremely important for Microsoft’s marketing strategies, serving as a
Trojan horse to introduce “free” Microsoft programs. This happened in 1995, when
Internet Explorer quickly gained an impressive market place in a short time – again,
instead of developing a concept and a product93, Microsoft simply acquired Mosaic
from the company Spyglass and make quick modifications transforming it into
Internet Explorer. After, with the development of extensions to the standard HTML
language, it almost eliminated Netscape from the market.

This drive us to the conclusion that Microsoft practices aim to conquer a complete
monopoly – not only for operating systems, but also for applications, appliances, the
internet and content94 – through the complete elimination of the competition. This has
already been analysed by the American and European justice departments.

• Hardware Independence

One of the main reasons behind Windows’ success is the independence from the
hardware supplier. If the processor chip is usually built by Intel and AMD, the
computers can be manufactured by any company following the specifications from
the PC architecture, or even assembled at home, by using standard components

93 Microsoft only created a “Research” department in 1995 (source: bibliography 18).
94 Bill Gates dedicated the chapters 4 to 7 to explain his vision about the future of Applications,
Appliances, The Internet, and the Content, and how he expects Microsoft to dominate the realms of
technology and social life by the use of “Killer Applications” (See bibliography 17).

Open Technologies for An Open World Jean Binder

 39

available in any electronic shop. On the other hand, the Apple Macintosh and IBM
PS/2 architectures force the customer to buy the hardware and software from the
same supplier. There’s no compatibility with other vendors, thus the cost remains
higher than the PC/Windows platforms, which benefit from the competition and the
higher market share to decrease the production costs.

Yet, the windows systems remain dependent of the PC architectures, and this may
be a serious disadvantage by opposition to the portability offered by Linux systems.
This is important to understand what is behind the strategies adopted by the
Microsoft competitors, to be studied on the next chapter.

• Social Organization

One important difference between the proprietary MS-DOS and Windows families
and the open systems is not technical, but social. There is not such a concept as
Windows hackers95. Windows environments were conceived to run alone, not in
networks. The UNIX systems have been built with strong networking facilities, since
their first versions, what allowed creating a large community that used, analysed,
developed and cooperated for its improvements. Moreover, the UNIX systems
appeared in the academic world, which favoured this community to be extremely
creative and looking for technological innovations. This concept, also known as peer-
to-peer (P2P), obtained its climax with Linux, which has entirely constructed (and still
evolves) through the Internet.

As well defined by Eric Raymond96, “the MS-DOS world remained blissful ignorant of
all this. Though those early microcomputer enthusiasts quickly expanded to a
population of DOS and Mac hackers order of magnitude greater than that of the
‘network nation’ culture, they never become self-aware culture themselves. The pace
of change was so fast that fifty different technical cultures grew and died as rapidly
as mayflies, never achieving quite the stability necessary to develop a common
tradition of jargon, folklore and mythic history. (…) The fact that non-UNIX operating
systems don’t come bundled with development tools meant that very little source was
passed over them. Thus, no tradition of collaborative hacking developed.”.

Complementary, as Himanen explains, “Bill Gates (…) gained hacker respect by
programming his first interpreter of the BASIC programming language (…) [but] in
Microsoft’s subsequent history, the profit motive has taken precedent over the
passion”97.

95 Except for the creators of virus and cyber-intruders.
96 See bibliography 5, page 26
97 See bibliography 4, page 56.

Open Technologies for An Open World Jean Binder

 40

2.2.5. Other Operating Systems

• Apple Mac/OS

Released in 1984 and integrating the hardware and software into the same platform,
the Apple Macintosh was the first to have good graphical interfaces to perform all the
basic functions. Apple refused (until 1995) to let anyone else make computer
hardware that would run it, limiting its success and avoiding it to become the
standard for graphical platforms.

The technical comparison with PC and Windows is not easy to be done, and the
eternal discussion is far from coming to an end. Apple addicts always considered the
Mac as a more stable platform, and with best results with multimedia applications.
The counterargument is that the modern windows / Intel systems improved their
graphic and sound systems, with the help from external cards, and could produce the
same quality. The reality today is that the Mac systems are more expensive, and are
still preferred by designers and artists to produce graphic, music and images.

The new version, MacOsX, is based in the UNIX operating system OpenStep, and
implement Vector-based graphic interfaces.98

• IBM OS/2

It’s surprising that IBM is still maintaining versions of their OS/2 Warp operating
system. In 1984, after having realized the real market potentials of personal
computing, IBM decided to create a close platform (PS/2) with a stronger architecture
than the IBM/PC – with mainframe customers in mind - and a solid operating system
(OS/2), to be able to run professional applications and compete with the DOS,
Windows and Macintosh families. The smaller prices of the PC clones, which already
had a large installed base, and were sold with an incorporated DOS/Windows
system, avoid this to happen. Contrarily to IBM hopes, the price was a more
important factor than reliability, and the OS/2 platform has never been largely used.

• IBM OS/400

The only one that can unequivocally be called a “minicomputer” operating system,
the OS/400 is the evolution of the IBM midrange System/36 and System/38 systems,
implemented on PowerPC chips. Despite the lack of good technical reasons to keep
both Unix and OS/400 platforms, the large installed base of these systems is able to
guarantee their continuity.
Additionally, the current OS/400 gives the users the ability to run Java, Windows and
UNIX applications (via PASE - Portable Application Solutions Environment which
supports a subset of the AIX environment).

98 See bibliography 18, page 160.

Open Technologies for An Open World Jean Binder

 41

2.2.6. Classification

Considering two major criteria discussed in the previous paragraphs – scalability and
openness – the operating systems can be classified by using the following chart:

Figure 12 – Operating systems – Openness and scalability

Scalability is the ability of increasing the system throughput by adding processors or
new systems, with a low impact in the efforts for managing the system (license costs
and human resources). Linux outperform the other systems due to its capacity of
running in virtually all hardware platform and machine sizes, its reduced cost, the
openness of its source code and the usage of open standards and protocols.

Figure 13 – Operating systems – set-up costs and proven reliability

The number of installed mainframe and UNIX systems for critical systems in large
companies, in addition to the decades of experience and fine tuning, help these
systems to have more confidence from IT specialists. The reduced initial setup
costs99 for windows and Linux platforms justify their choice when price is an
important element. Goldman Sachs considers Linux as “Enterprise Class”, and
estimates that Linux will soon replace windows in medium-large servers100. The cost
analysis and comparisons will be detailed on chapter 6.4.

99 The TCO (Total Cost of Ownership) is more difficult to be measured, and contradictory analysis can
be found today, which difficult an independent comparison. See a detailed analysis of costs later in
this document, on pages 103-109.
100 Source: DataNews n°04, 31/1/2003, Page 26

Scalability

Linux

Openness

UNIXzOS

Windows

Set-up
Costs

Linux

Proven reliability for Large Systems

UNIX

zOS

Windows

Open Technologies for An Open World Jean Binder

 42

2.3. Communication

The co-existence of different standards on the hardware and software domains may
stimulate the competition, the innovation and the market. For the network
infrastructures, the absence of widely accepted standard and protocols can simply
avoid the communication to happen in a global way.

One of the first problems identified when the Internet ideas started to flourish was “to
understand, design, and implement the protocols and procedures within the
operating systems of each connected computer, in order to allow the use of the new
network by the computers in sharing resources.”101

The free exchange of information via the Internet, independently of the hardware or
operating system we may use, is possible due to the previous definition of standards,
which we may classify in three different tiers: The communication via the network, the
addressing of each node and the content formatting and browsing. Standard bodies
are responsible for their definition, publication and conformity. Let us discuss the
communication and addressing tiers. The content will be discussed in details on the
chapter 4 (page 80).

2.3.1. Network

As we saw in chapter 2, the first mainframes and minicomputers performed very
specific tasks, independent of any other computer, and the users and operators were
connected locally, normally in the same building than the machines. When distant
systems started to connect with each other, and to remote users, clear conventions
needed to be established.

• The OSI model

The OSI reference model was developed by the International Organization for
Standardization (ISO) in 1984, and is now considered the primary architectural model
for inter-computer communications.

OSI is a conceptual model composed of seven layers, each specifying particular
network functions. It only provides a conceptual framework. Several communication
protocols have been developed using it as a reference, allowing their interoperability.

Figure 14 – The OSI model - Seven layers and two categories

101 ARPA not draft, II-8

Open Technologies for An Open World Jean Binder

 43

The seven layers of the OSI reference model can be divided into two categories: the
upper layers (which deal with application issues and generally are implemented only
in software) and the lower layers (which handle data transport issues).

• The Internet Protocols

In the mid-1970s, the Defense Advanced Research Projects Agency (DARPA)
started to develop a packet-switched network that would facilitate communication
between dissimilar computer systems at research institutions. The result of this
development effort was the Internet protocol suite102 that contained several basic
network protocols. Among others, Transmission Control Protocol (TCP) and the
Internet Protocol (IP) are the two best known and commonly used together103.

One of the main reasons of their quick adoption by the research institutions (and later
the whole market) was their openness. The Internet Protocol suite is nonproprietary,
born in an academic environment close to the UNIX developments, and soon both
work in synergy. TCP/IP was included with Berkeley Software Distribution (BSD)
UNIX to become the foundation of the Internet104.

Figure 15 – Correspondence between the OSI layers and some Internet Protocols.

• SNA

In 1974, IBM introduced a set of communications standards, called SNA105, which
was extremely convenient to the mainframes hierarchical topologies. Like other IBM
definitions for hardware and operating systems architectures, it is a proprietary
protocol, but clearly defined and open for the use of other manufacturers. This
allowed IBM and many other companies to provide servers communication hardware
and programming products, which could be connected by the usage of common
communication definitions, hardware specifications and programming conventions.

102 Which was completed in the late 1970s
103 Source: bibliography 44
104 The TCP/IP protocols and simple applications were integrated into UNIX 4.2BSD, release in August
1983. Source: Bibliography 5, page 38.
105 SNA stands for Systems Network Architecture

Open Technologies for An Open World Jean Binder

 44

The administration of a SNA network is centralized, what improves its security while
reducing its flexibility.

IBM tried to evolve SNA to an open-standard known as High-Performance Routing
(HPR), without success. SNA is still used in the core mainframe connections,
although it is being replaced by TCP/IP in distant connections, due to pressures of
intranets and the Internet, and for more flexibility.

2.3.2. Addressing

A set of techniques is used to allow the identification of each single machine in the
world, to allow the Internet packets to be distributed efficiently. Each computer with
capability to be connected to the Internet receives from its manufacturer a single and
unique address (called MAC address106). When a computer connects to an Internet
or intranet server, it receives a network address107.

As the IP addresses are quite difficult to remember, a domain name is created for
important servers (like web or FTP servers)108. A hierarchy of systems have been
created to locate a domain name. It is called DNS109. The intelligence behind the
DNS servers is provided by the open source program BIND, and soon the “Domain
Wars” started to decide who would control the domains.

The conflicts have been solved by a policy specifying the codification of roles in the
operation of a domain name space:

! Registrant - The entity that makes use of the domain name.

! Registrar - The agent that submits change requests to the registry on behalf of

the registrant.

! Registry - The organization that has edit control of the name space’s

database.

One non-profit organization has been created, ICANN110, which the role is to oversee
administer Internet resources including Addresses (by delegating blocks of
addresses to the regional registries), Protocol identifiers and parameters (by
allocating port numbers, etc.) and Names.

106 The Media Access Control address has 48 bits and it is composed by the identification of the
manufacturer (OUI - Organizationally Unique Identifier) and a serial number.
107 Also known as TCP/IP address, and it may be fixed or dynamically assigned. It is something like
62.205.73.168. Web servers have fixed allocated network addresses. Google, for example, have the
address 216.239.55.101 for its Belgian server.
108 Following our previous example, the domain for Google Belgium is www.google.be.
109 The “Domain Name System” has been created in 1983 by Paul Mockapetris (RFCs 1034 and 1035)
and modified, updated, and enhanced by a myriad of subsequent RFCs. Source: bibliography 48
110 ICANN stands for Internet Corporation for Assigned Names and Numbers. See chapter 11 for more
info.

Open Technologies for An Open World Jean Binder

 45

2.3.3. The Internet

• History

The Internet is the result of many technologies developing in parallel, around the
Advanced Research Projects Agency (ARPA, today called DARPA111) of the U.S.
Department of Defense. Motivated by the launching of the first sputnik, ARPA started
to design a communications system invulnerable to nuclear attack. It was the
ARPANET112 project, based on packet switching communication technology. “The
system made the network independent of command and control centers, so that
message units would find their own routes along the network, being reassembled in
coherent meaning at any point in the network”113.

Important is to notice that, since the beginning, the concept around the network had
stronger cultural and social than technical motivations: "The ARPA theme is that the
promise offered by the computer as a communication medium between people,
dwarfs into relative insignificance the historical beginnings of the computer as an
arithmetic engine."114

J.C.R. Licklider115 perceived the spirit of community created among the users of the
first time-sharing systems. He envisioned an “'Intergalactic Network”, formed by
academic computer centers. His ideas took almost one decade to become reality: On
October 25, 1969 a host-to-host connection has been successfully established
between the University of California Los Angeles (UCLA) and the Stanford Research
Institute (SRI), creating the network roots for the Internet.

In the same time – as we already discussed – UNIX was born and the Internet
Protocols have been defined. In 1973, 25 computers were connected using the
ARPANET structure116, opened to the research centers cooperating with the US
defense Department. Other networks - using the ARPANET as the backbone
communication system – started to appear, aimed to connect scientists from all
disciplines, military institutions. This network of networks, formed during the 1980s,
was called ARPA-INTERNET, then simply INTERNET, still supported by the Defense
Department and operated by the National Science Foundation.

In 1995, motivated by commercial pressures, the growth of private corporate
networks, and of non-profit, cooperative networks, the Internet was privatized. About
100,000 computer networks were interconnected around the world in 1996, with
roughly 10 million computers users.117 The internet has posted the fastest rate of
penetration of any communication medium in history: in the United States, the radio
took 30 years to reach 60 million people; TV reached this level of diffusion in 15

111 http://www.arpa.mil
112 For the full ARPANET history please refer to the bibliography 53.
113 Source: bibliography 1, page 45.
114 ARPA draft, III-24
115 The first head of the Information Processing Techniques Office (IPTO), a department of ARPA.
116 Source: Bibliography 1
117 Source: Bibliography 54

Open Technologies for An Open World Jean Binder

 46

years; the Internet did it in just three years after the development of world wide
web.118

• The World Wide Web

In addition to being a means of communicating via e-mail, the Internet has become a
means of propagating information via hypertext documents. Hypertext documents
contain specific words, phrases, or images that are linked to other documents. A
reader of a hypertext document can access these related documents as desired,
usually by pointing and clicking with the mouse or using the arrow keys on the
keyboard.

In this manner, a reader of hypertext documents can explore related documents or
follow a train of thought from document to document, in the intertwined web of related
information. When implemented on a network, the documents within such a web can
reside in different machines, forming a network-wide web. Similarly, the web that has
evolved on the Internet spans the entire globe and is known as World Wide Web.119

• Standard Bodies

A wide variety of organizations contribute to internetworking standards by providing
forums for discussion, turning informal discussion into formal specifications, and
proliferating specifications after they are standardized.

Most standards organizations create formal standards by using specific processes:
organizing ideas, discussing the approach, developing draft standards, voting on all
or certain aspects of the standards, and then formally releasing the completed
standard to the public. They are normally independent, aimed to stimulate a healthy
competition, but they are often influenced by companies and lobbies.

• The Internet Standardization

Some of the organizations that contributed to the foundation of Internet with
internetworking standards may be found in the chapter Appendix B. The heart of
Internet standardization is the IETF, which coordinate the developments in working
groups. According to Scott Bradner, co-director of the Transport Area in the IETF,
“IETF working groups created the routing, management, and transport standards
without which the Internet would nor exist. They have defined the security standards
that will help secure the Internet, the quality of service standards that will make the
Internet a more predictable environment, and the standard for the next generation of
the Internet protocol itself. (…) There is enough enthusiasm and expertise to make
the working group a success”120.

Apart from TCP/IP itself, all of the basic technology of the Internet was developed or
refined in the IETF.

118 Source: Bibliography 1, pg. 382
119 Source: Bibliography 24, pg.114
120 Bradner’s full explanation about the IETF may be found in his essay on bibliography 5, pages 47-
52.

Open Technologies for An Open World Jean Binder

 47

Resulting from the working groups are the base documents in the standardization
process, known as RFC (Request For Comment)121. The RFC series of documents
on networking began in 1969 as part of the original ARPANET project. Initially they
were submitted for comments (as the name indicates) but, after the Internet has been
developed, they ave generally gone through an extensive review process before
publication. In the end, they become proposals for standards (and following the
standard track possibly become Draft Standards and Internet Standards), best
current practice guides, informational guidelines, etc. They are freely available on the
Internet and may be republished in its entirety by anyone. Interesting examples of
RFC are the 2026122, which recursively describes the Internet standards process and
the 3160123, known as “The TAO of IETF”.

The proposed standards are analysed by the IAB, which may use them to create the
final standards. The research is done by the IRTF.

Also important are the IANA - responsible for names, domains and codes – and the
W3C – which coordinates the work over the standards related to the Web, like the
HTTP protocol and the HTML language124.

The web standards have three different stages. The first is the draft, where the
proposals are made public and are open to large-scale reviews and change. After
they have been available for a certain time, the draft moves to the second stage,
known as Proposed recommendation. During a 6-week period, members of the W3C
vote to decide upon the adoption of the proposal as the final standard (either fully or
with minor changes). If the standard is rejected, it may return to draft status for further
modifications and consultation125.

2.3.4. Trend: Open Spectrum

A radical idea, open spectrum can transform the communications landscape as
profoundly as the Internet ever did, by suppressing the telephone, cable and Net
access fees. The idea is that smart devices cooperating with one another function
more effectively than huge proprietary communication networks, by treating the
airwaves as commons, shared by all.126

In an open spectrum world, wireless transmitters would be as ubiquitous as
microprocessors (in televisions, cars, public spaces, handheld devices) and tune
themselves to free spectrum and self-assemble into networks.

If the Internet revolution started with the Arpanet, the wireless paradigm is happening
via Wi-Fi, protocol that uses a narrow slice of spectrum that is already open. When
spectrum licensing was established in the early 20th century, radios were primitive, as
was the regulatory model used to govern them. Broadcasters needed an exclusive
slice of the spectrum. Today digital technologies let many users occupy the same

121 http://www.ietf.org/rfc.html
122 http://www.iesg.org/rfc/rfc2026.txt
123 http://www.iesg.org/tao.html
124 For more information about the standards and standard bodies, see the bibliography 27.
125 The full process is described on http://www.w3.org/Consortium/Process-20010719/
126 Source: Bibliography 34

Open Technologies for An Open World Jean Binder

 48

frequency at the same time.127 In 2004 half of the laptops used at work are expected
to have wireless connections, and in 2006 Intel hopes to incorporate transmitters into
all of its processor chips.128

2.4. Open Trends

The current trend is the increase the level of Hardware and Software Independence,
transforming IT into a commodity.

• Applications dependent on the hardware

Initially the customer was entirely tied to the hardware supplier. All the software was
built in machine code (or in low-level languages like Assembler), different for each
machine, even from the same supplier. This incompatibility brought several problems,
when these machines needed to be changed or simply upgraded to a larger model:

! Compatibility – All the code should be reviewed, and sometimes completely

rebuilt. Some of the code could be bought from the hardware supplier (mainly
for the basic software tools), but the main part was developed internally.

! Migration tasks – The formats and protocols used to store the data were also

different among the hardware platforms. To transfer the data, conversion
procedures needed to be written.

! Specialization – The persons should be trained to learn the new platform. This

also motivated some people to change their jobs to keep their technological
knowledge and specializations.

• Operating Systems dependent on the hardware

The hardware suppliers started to create architectures (as the case for IBM S/360,
analysed on page 21), to reduce their development tasks, cut maintenance costs,
and simplify the migration tasks among the different machines using the same
architecture. Nevertheless, the customer was still tied to the hardware manufacturer.
To change the hardware platform, the operating system need also to be changed,
implying a redesign of the application and the change of the bridges between the
system and user interfaces. In most of the cases, the complete application is rebuilt,
to better use the facilities from the new operating system.

As an example, this is what occurs in downsizing process, in companies migrating
from mainframe applications to smaller platforms. This may take more than a decade
to be fully completed.

127 For a detailed analysis of the theory behind this, please refer to the bibliography 27, chapters 3.2 to
3.5.
128 Source: bibliography 34

Open Technologies for An Open World Jean Binder

 49

• Hardware independence

The development of open systems platforms – like UNIX – freed the customer from
the hardware supplier. After the creation of The Single UNIX Specification (see page
27), the portability of the applications is paramount. However, the customer is still
tied to the extensions to the base platform provided by the supplier. To change the
hardware supplier or platform, the usage of the hardware extensions and software
specificities should be checked and rebuilt. To avoid this, the usage of these “extra-
features” should be reduced to a minimum and well documented.

Many manufacturers use the tie between their hardware and software to distinguish
their systems, while other companies treat hardware and software as separate
businesses.

• Software Independence

To reduce the efforts of maintaining different hardware platforms, while keeping the
development of operating systems that satisfy different customers requirements,
some companies started to standardize the hardware platforms, keeping it
compatible with different operating systems. It was the case of IBM, initially within the
mainframes family, one line of computers (zSeries) is compatible with three operating
system families (zOs, zVM, zVSE). Recently, with IBM concentrating their revenues
in the services rather than in the software or machines, all lines of IBM computers
(Series Z, X, I and P129) are compatible with Linux. Now customers can even add
Linux and Open source applications to IBM UNIX machines (pSeries), co-existing
with the IBM UNIX (AIX5L) operating system.

• Applications

Originally, the programming process was accomplished by the arduous method of
requiring the programmer to express all algorithms in the machine’s language
(expressed in binary digits). The first step toward removing these complexities from
the programming process was the creation of assembly languages (also called
second-generation languages), which replaced numeric digits by mnemonics. The
evolution continued with the third-generation languages (e.g. COBOL, C), which used
statements closer to the human language, traduced into the machine language by
compilers.

With the development of third-generation languages, the goal of machine
independence (discussed previously in this document) was largely achieved. Since
the statements did not refer to the attributes of any particular machine, they could be
compiled as easily for one machine as for another130.

The evolution continued, with the implementation of software packages that allow
users to customize computer software to their applications without needing hardware,
operating systems, or programming languages expertise. Some of those packages

129 Source: Bibliography 110.
130 Reality, however, has not proven to be that simple, due to the different dialects used on different
machines.

Open Technologies for An Open World Jean Binder

 50

are so complex, however, that need the participation of business specialists, with an
advanced knowledge of the packages, for the implementation of business
functions131.

On the chapter 3, we will se how open platforms like CORBA and Java can be used
to achieve a maximum independence over the third-level languages, without the
inconvenience of the software packages.

Still on the cradle is the usage of declarative programming (sometimes referred to as
fifth-generation languages or logic programming), for expert systems and artificial
intelligence applications.

• The informational commodities: Hardware, Software, Applications

In the 1960s, the computers resources were so expensive that they were shared
among different companies, who bought slots of “CPU time”. It is a concept known as
“Time Sharing”, and it started the vision of hardware as a commodity. The company
does not need to buy a computer, install it, or have a special team to maintain it.
Computer systems are simply used, and the fees are either fixed (based on the
resources available) or based in the usage of the machines.

Nowadays, the evolution of this concept is the usage of applications as commodities.
With the good performance and the relatively low price of the network
communications, it’s possible to run a system completely separated from the
company. Moreover, with the advanced level of hardware and system independence,
the only compatibility to be considered is in the application level.

That’s the era of ISP (Internet Service Providers), which take care of the internet, e-
mail and part of the network infrastructure, and the ASP (Application Service
Providers), which supply the access to the application, freeing the company of most
of the concerns related to the information and communication technologies (ICT).

Companies can run complete applications, hosted by ASPs and available via the
Web. The network infrastructure can be rented from a third-party, also responsible for
its maintenance. Network computers can be leased from a specialized company,
which may offer the technical support. In this case, computing power is a facility at
almost the same level than electricity and water.132

• Open Crystal Ball

The different hardware platforms will probably continue to broaden their initial scope,
and possibly start to fusion. The division lines among them will finally disappear,
each computer being able to run several different operating systems, in parallel. The
open platforms are the key for this to happen, with the proprietary hardware being
increasingly compliant with them, assimilating open architectures definitions.

131 As an example, this is the case of SAP.
132 For an analysis of the (ab)usage of services and the impact in nowadays society see the essay
e*conomy, available on http://www.k-binder.be/Papers/

Open Technologies for An Open World Jean Binder

 51

The end of the windows monopoly will mark the next decade. However, nobody
needs another dominant operating system. The existing software platforms need to
co-exist, to allow the companies and users to have choice, with the competition
helping to increase the quality. The choice must be based on real business and
personal needs; marketing will continue to blur the technical advantages, and to
reduce this negative effect, information must be simplified and well focused to the
public.

Most of the Internet tools have been developed through the open-source process.
Apache – The Open source web server – still dominates the market133. What are the
advantages of open source technology over proprietary products, for a worldwide
network?

One answer is communication. The Internet is based in open standards, which were
always successful to perform the connection of different hardware and software
platforms. The communication was always possible and often perfect. Compatibility
problems started to appear with proprietary extensions to the standards (like the
HTML extensions for Netscape and Internet Explorer).

A second answer was the availability of common (and free) tools to start using the
Internet and creating web pages. Proprietary solutions (like Microsoft ASP and .NET)
and standards (like Shockwave) often need an expensive set of tools and machines,
what limits their usage by academic and home users.

A third answer is probably “too” clear: the openness of the source code. Early web
sites - using technologies like HTML and Javascript – were easily copied, altered and
published again in another part of the world. This made the creation of personal web
sites easy, and allowed a quick “learning by example”. The implementation of open
source technologies like CGI scripts and PHP – which “hide” the source from the
page – has been helped by the hacker community, which created sites with several
examples of source code, which can be freely used, without royalties. The online
communities maintained by commercial companies behind proprietary solutions can
help to reduce this gap.

133 According to Netcraft, in October 2002 60% of the web servers were running Apache, against 29%
for Microsoft servers. To see the updated statistics, please refer to http://www.netcraft.com/survey/

Open Technologies for An Open World Jean Binder

 52

3. Open Internet Development

Most of the well designed Internet applications are developed under object-oriented
methodologies134, to better cope with the modular structures of HTML and XML, and
to more effectively reuse or even share programming modules with other companies.
The applications using object-oriented languages are often designed using a formal
methodology and tightly related to modelling languages.

In this chapter, we will analyse the development of open methodologies for
application design, which can be extremely helpful to ensure scalability, security and
robust execution of Web applications under stressful conditions. After, we will see
three different platforms used to develop the web applications, and discuss the
importance of open standards to build web services.

We cannot finish without analysing the current hype around agile development and
extreme programming. To conclude, we will review some ideas about comparison
elements between open and proprietary platforms.

3.1. Design

Modelling is the designing of software applications before coding, being an essential
part of large software projects, and helpful to medium and small projects. Using a
model, those responsible for a software development project's success can assure
themselves that business functionality is complete and correct, end-user needs are
met, and program design supports requirements for scalability, robustness, security,
extendibility, and other characteristics, before implementation in code renders
changes difficult and expensive to make.

3.1.1. MDA

The OMG Model Drive Architecture (MDA) provides an open,
vendor-neutral approach to the challenge of business and
technology change. Based firmly upon other open standards,
MDA aims to separate business or application logic from
underlying platform technology. The platform-independent
models enable intellectual property to move away from
technology-specific code, helping to foster application
interoperability.135

134 The four keys to object orientation are Encapsulation, Polymorphism, Inheritance and Instantiation
135 Source: http://www.omg.org/mda/

Open Technologies for An Open World Jean Binder

 53

• Specification

In September 2001, OMG members completed the series of votes that established
the MDA as the base architecture for the organization's standards.136 Every MDA
standard or application is based, normatively, on a Platform-Independent Model
(PIM), which represents its business functionality and behaviour very precisely but
does not include technical aspects. From the PIM, MDA-enabled development tools
follow OMG-standardized mappings to produce one or more Platform-Specific
Models (PSM): one for each target platform that the developer chooses.

The PSM contains the same information as an implementation, but in the form of a
UML model137 instead of running code. In the next step, the tool generates the
running code from the PSM, along with other necessary files. After giving the
developer an opportunity to hand-tune the generated code, the tool produces a
deployable final application.

MDA applications are composable: If PIMs are imported for modules, services, or
other MDA applications into the development tool, it can generate calls using
whatever interfaces and protocols are required, even if these run cross-platform.
MDA applications are “future-proof”: When new infrastructure technologies come on
the market, OMG members will generate and standardize a mapping to it, and the
vendors will upgrade his MDA-enabled tool to include it. Taking advantage of these
developments, cross-platform invocations can be generated to the new platform, and
even port the existing MDA applications to it, automatically using the existing PIMs.
Although MDA can target every platform and will map to all with significant market
buy-in, CORBA138 plays a key role as a target platform because of its programming
language-, operating system-, and vendor-independence. The mapping from a PIM
to CORBA has already been adopted as an OMG standard.139

136 The initial definition of the MDA is set out in the document "Model Driven Architecture - A Technical
Perspective", by the OMG Architecture Board MDA Drafting Team.
137 See chapter 3.1.3 on page 57
138 See chapter 3.1.2 on page 55
139 Source: Bibliography 97

Open Technologies for An Open World Jean Binder

 54

• The core

Figure 16 – Model Driven Architecture140

! The Unified Modeling Language (UML)
As discussed, each MDA specification will have, as its normative base, two levels of
models: a Platform-Independent Model (PIM), and one or more Platform-Specific
Models (PSM). These will be defined in UML, making OMG's standard modeling
language the foundation of the MDA. UML is discussed separated in the next
chapter.

! The Meta-Object Facility (MOF)
By defining the common meta-model for all of OMG's modeling specifications, the
MOF allows derived specifications to work together in a natural way. The MOF also
defines a standard repository for meta-models and, therefore, models (since a meta-
model is just a special case of a model).

! Common Warehouse MetaModel (CWM)

The CWM standardizes a complete, comprehensive metamodel that
enables data mining across database boundaries at an enterprise and
goes well beyond. Like a UML profile but in data space instead of
application space, it forms the MDA mapping to database schemas.
The product of a cooperative effort between OMG and the Meta-Data

Coalition (MDC), the CWM does for data modelling what UML does for application
modelling.

140 Source: http://www.omg.org/mda/

Open Technologies for An Open World Jean Binder

 55

3.1.2. CORBA141
CORBA is the acronym for Common Object Request Broker
Architecture, OMG's open, vendor-independent architecture
and infrastructure that computer applications use to work
together over networks. Using the standard protocol IIOP, a
CORBA-based program from any vendor, on almost any
computer, operating system, programming language, and
network, can interoperate with a CORBA-based program
from the same or another vendor, on almost any other

computer, operating system, programming language, and network. CORBA is useful
in many situations because of the easy way that CORBA integrates desktop and
servers from so many vendors.

• Technical overview

In CORBA, client and object may be written in different programming languages.
CORBA applications are composed of objects142. For each object type, an interface
is defined in OMG IDL (Interface Definition Language)143. The interface is the syntax
part of the contract that the server object offers to the clients that invoke it. Any client
that wants to invoke an operation on the object must use this IDL interface to specify
the operation it wants to perform, and to order the arguments that it sends. When the
invocation reaches the target object, the same interface definition is used there to
parse the arguments and perform the requested operation.

This separation of interface from implementation is the essence of CORBA. The
interface to each object is defined very strictly. In contrast, the implementation of an
object - its running code, and its data - is hidden from the rest of the system (that is,
encapsulated). Clients access objects only through their advertised interface,
invoking only those operations that that the object exposes through its IDL interface,
with only those parameters (input and output) that are included in the invocation.

141 Source: Bibliography 100.
142 Individual units of running software that combine functionality and data, and that frequently (but not
always) represent something in the real world.
143 The IDL interface definition is independent of programming language, but maps to all of the popular
programming languages via OMG standards: For example, OMG has standardized mappings from IDL
to C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript.. See
http://www.omg.org/gettingstarted/omg_idl.htm for more details.

Open Technologies for An Open World Jean Binder

 56

Figure 17 – CORBA request from client to object144

The above figure shows how everything fits together, at least within a single process:
The IDL is compiled into client stubs and object skeletons145. Passing through the
stub on the client side, the invocation continues through the ORB (Object Request
Broker)146, and the skeleton on the implementation side, to get to the object where it
is executed. Because IDL defines interfaces so strictly, the stub on the client side
matches perfectly with the skeleton on the server side, even if the two are compiled
into different programming languages, or even running on different ORBs from
different vendors.

Figure 18 – CORBA remote invocation flow using ORB-to-ORB communication147

The figure above diagrams a remote invocation. In order to invoke the remote object
instance, the client first obtains its object reference. To make the remote invocation,
the client uses the same code that it used in the local invocation we just described,
substituting the object reference for the remote instance. When the ORB examines
the object reference and discovers that the target object is remote, it routes the
invocation out over the network to the remote object's ORB. Although the ORB can
tell from the object reference that the target object is remote, the client cannot. This
ensures location transparency - the CORBA principle that simplifies the design of
distributed object computing applications.

144 © 2000 OMG
145 Stubs and skeletons serve as proxies for clients and servers, respectively.
146 For more details on ORB see http://www.omg.org/gettingstarted/orb_basics.htm
147 © 2000 OMG

Open Technologies for An Open World Jean Binder

 57

3.1.3. UML

The Unified Modelling Language (UML) is a open
method for specifying, visualizing, constructing, and
documenting the artefacts of software systems, as well
as for business modelling and other non-software
systems. It represents a collection of the best
engineering practices that have proven successful in the
modelling of large and complex systems, addressing the
needs of user and scientific communities.148

• Medieval ages

Identifiable object-oriented modelling languages began to appear between mid-1970
and the late 1980s149 as various methodologists experimented with different
approaches to object-oriented analysis and design. Several other techniques
influenced these languages, including Entity-Relationship modelling and the
Specification & Description Language. These early methods could not satisfy most of
the design requirements, and started to incorporate each other’s techniques. A few
clearly prominent methods emerged, including the OOSE, OMT-2, and Booch’93
methods. Each of these was a complete method, and was recognized as having
certain strengths. In simple terms, OOSE was a use-case oriented approach that
provided excellent support business engineering and requirements analysis. OMT-2
was especially expressive for analysis and data-intensive information systems.
Booch’93 was particularly expressive during design and construction phases of
projects and popular for engineering-intensive applications. 150

• All for one

The UML started out as collaboration among three outstanding methodologists:
Grady Booch (Boock’93), Ivar Jacobson (OOSE), and James Rumbaugh (OMT-2). At
first Booch and Rumbaugh sought to unify their methods with the Unified Method v.
0.8 in 1995; a year later Jacobson joined them to collaborate on the slightly less
ambitious task of unifying their modelling languages with UML 0.9.

The user community quickly recognized the advantages of a common modelling
language that could be used to visualize, specify, construct and document the
artefacts of a software system. They enthusiastically applied early drafts of the
language to diverse domains ranging from finance and health to telecommunications
and aerospace. Driven by strong user demand, the modelling tool vendors soon
included UML support in their products. 151

148 Source: Bibliography 12
149 The number of identified modelling languages increased from less than 10 to more than 50 during
the period between 1989-1994
150 Source: Bibliography 12
151 Source: Bibliography 98

Open Technologies for An Open World Jean Binder

 58

• One for all

At the same time that UML was becoming a de facto industry standard, an
international team of modelling experts assumed the responsibility to make the
language a formal standard as well. The “UML Partners”, representing a diverse mix
of vendors and system integrators, began working with the three methodologists in
1996 to propose UML as the standard modelling language for the OMG. The
Partners organized themselves into a software development team that followed a
disciplined process. Since the process was based on an iterative and incremental
development life cycle, the team produced frequent “builds” and draft releases of the
specification.

The Partners tendered their initial UML proposal to the OMG (UML 1.0) in January
1997. After nine months of intensive improvements to the specification, they
submitted their final proposal (UML 1.1) in September 1997, which the OMG officially
adopted as its object-modelling standard in November 1997. UML 1.5 is the current
specification adopted by the OMG, and in mid-2001, OMG members started work on
a major upgrade to UML 2.0. Four separate RFPs - for UML Infrastructure, UML
Superstructure, Object Constraint Language, and UML Diagram Interchange - keep
the effort organized.

The OMG defines object management as software development that models the real
world through representation of "objects." These objects are the encapsulation of the
attributes, relationships and methods of software identifiable program components. A
key benefit of an object-oriented system is its ability to expand in functionality by
extending existing components and adding new objects to the system. Object
management results in faster application development, easier maintenance,
enormous scalability and reusable software.152

OMG members are preparing to standardize a Human-Usable Textual Notation
(HUTN) for UML models, or at least those that fit into the Enterprise Distributed
Object Computing (EDOC) UML Profile.

• (Almost) Ten Years Later

UML defines twelve types of diagrams, divided into three categories:
! Structural Diagrams represent static application structure and include the Class

Diagram, Object Diagram, Component Diagram, and Deployment Diagram.

! Behavior Diagrams represent different aspects of the application’s dynamic

behavior and include the Use Case Diagram (used by some methodologies
during requirements gathering); Sequence Diagram, Activity Diagram,
Collaboration Diagram, and Statechart Diagram.

! Model Management Diagrams represent ways the applications modules can be

organized and managed and include Packages, Subsystems, and Models.

The Advanced UML Features add to the expressiveness of UML:

152 Source : http://www.omg.org/news/about/index.htm

Open Technologies for An Open World Jean Binder

 59

! Object Constraint Language (OCL) has been part of UML since the beginning and
express conditions on an invocation in a formally defined way: invariants,
preconditions, post conditions, whether an object reference is allowed to be null,
and some other restrictions using OCL. The MDA relies on OCL to add a
necessary level of detail to PIMs and PSMs.

! Action Semantics UML Extensions are a recent addition and express actions as

UML objects. An Action object may take a set of inputs and transform it into a set
of outputs, or may change the state of the system, or both. Actions may be
chained, with one Action's outputs being another Action's inputs. Actions are
assumed to occur independently - that is, there is infinite concurrency in the
system, unless you chain them or specify this in another way. This concurrency
model is a natural fit to the distributed execution environment of Internet
applications.

UML Profiles tailor the language to particular areas of computing or particular
platforms. In the MDA, both PIMs and PSMs will be defined using UML profiles;
eventually OMG will define a suite of profiles that span the entire scope of MDA.
Examples of three supporting UML Profiles and one specialized profile are153:

! The UML Profile for CORBA defines the mapping from a PIM to a CORBA-

specific PSM.

! The UML Profile for EDOC is used to build PIMs of enterprise applications. It

defines representations for entities, events, process, relationships, patterns, and
Enterprise Collaboration Architecture.

! The UML Profile for EAI defines a profile for loosely coupled systems154. These

modes are typically used in Enterprise Application Integration, but are used
elsewhere as well.

! A UML Profile for Schedulability, performance, and time supports precise

modelling of predictable systems, precisely enough to enable quantitative
analysis.

• Opening the iron mask

UML is clearly an open methodology, and the three main characteristics are the
independency of the technical infrastructure, the independency of the methodology
and the openness of its definition, managed by a recognised and independent
organisation (OMG).

At first, UML can be used to model any type of application, running on different
combinations of hardware and software platforms, programming languages and
network protocols. Built upon the MOF metamodel which defines class and operation
as fundamental concepts, UML is a natural fit for object-oriented languages and

153 Source: Bibliography 99
154 Loosely coupled are those systems that communicate using either asynchronous or messaging-
based methods

Open Technologies for An Open World Jean Binder

 60

environments like C++, C#, Java and Python. Some UML tools155 analyse existing
source code and reverse-engineer it into a series of UML diagrams. Other tools
execute UML models in interpretative way (to validate the design) and other may
even generate program language code from UML.

The process of gathering and analysing an application's requirements, and
incorporating them into a program design, is a complex one and the industry
currently supports many methodologies that define formal procedures specifying how
to go about it. The second characteristic of UML is that it is methodology-
independent. Regardless of the methodology used to perform the analysis and
design, UML can express the results. Using XMI (XML Metadata Interchange,
another OMG standard), the UML model can be transferred from one tool into a
repository, or into another tool for refinement or the next step in the chosen
development process.156

At last, the UML definitions are openly discussed by an independent organisation –
OMG, freely published in the Web and implemented by any software vendor,
including several open source projects.

The OMG is structured into three major bodies, the Platform Technology Committee
(PTC), the Domain Technology Committee (DTC) and the Architecture Board. The
consistency and technical integrity of work produced in the PTC and DTC is
managed by an overarching Architectural Board. Within the Technology Committees
and Architectural Board rest all of the Task Forces, SIGs, and Working Groups that
drive the technology adoption process of the OMG.

There are three major methods of influencing the OMG process, in addition to the
impact of general review, commentary and open discussion. The first is the ability to
vote on work items or adoptions in the Task Forces that are ultimately reviewed and
voted on at the Technology Committee level. The second is the ability to vote on
work items or adoptions at one or both of the Technology Committee levels. The third
is the ability to actually submit technology for adoption at one or both of the
Technology Committee levels. Membership fees are based on these levels of
influence.157

155 A series of UML tools can be found on
http://www.objectsbydesign.com/tools/umltools_byCompany.html
156 Source : Bibliography 97
157 Source : http://www.omg.org/news/about/index.htm

Open Technologies for An Open World Jean Binder

 61

3.2. Web Platforms

3.2.1. Java

The Java platform is based on the power of networks. Since its initial
commercial release in 1995, Java technology has grown in popularity and
usage because of its true portability. Java is a general-purpose concurrent
object-oriented programming language. Its syntax is similar to C and C++,
but it omits many of the features that make C and C++ complex, confusing,

and unsafe. Java was initially developed to address the problems of building software
for networked consumer devices. It was designed to support multiple host
architectures and to allow secure delivery of software components. To meet these
requirements, compiled Java code had to survive transport across networks, operate
on any client, and assure the client that it was safe to run.

• Java platform

A platform is the hardware or software environment in which a program runs. We've
already mentioned some of the most popular platforms in the chapter 2. Most
platforms can be described as a combination of the operating system and hardware.
However, Java is a software-only platform that runs on top of other hardware-based
platforms.

The Java platform was designed to run programs securely on networks and allows
the same Java application to run on many different kinds of computers. For example,
PersonalJava applications power home appliances, Java Card applications run on
smart cards, smart rings, and other devices with limited memory, and Java TV
applications run in television settop boxes. This interoperability is guaranteed by a
component of the platform called the Java virtual machine (or "JVM") – a kind of
interpreter that turns general Java platform instructions into tailored commands that
make the devices do their work.158

Figure 19 – Java platform components159

The other component – Java API – is a large collection of ready-made software
components that provide many useful capabilities, such as graphical user interface
(GUI) widgets. The Java API is grouped into libraries of related classes and
interfaces; these libraries are known as packages.

158 Source: http://java.sun.com/java2/whatis/
159 Source: http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html

Open Technologies for An Open World Jean Binder

 62

The power of compiled languages is the execution speed. The power of interpreted
languages is the flexibility to run a same program in different platforms. The Java
programming language is unusually powerful in that a program is both compiled and
interpreted. With the compiler, first you translate a program into an intermediate
language called Java bytecodes —the platform-independent codes interpreted by the
interpreter on the Java platform. The interpreter parses and runs each Java bytecode
instruction on the computer. Compilation happens just once; interpretation occurs
each time the program is executed.

Figure 20 – Java compiler and interpreter160

• Java editions

Three editions group the different technologies according to the hardware platform:
J2ME (tiny commodities, like smartcards), J2SE (development of applets and
applications) and J2EE (enterprise server-side applications).

Figure 21 – The Java platform and editions161

160 Source : http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html
161 Source: http://java.sun.com/java2/whatis/

The Java Language

JVM (Java Virtual Machine)

Open Technologies for An Open World Jean Binder

 63

Java is owned by Sun Microsystems, which has in place the appropriate mechanisms
to meet the evolving needs of the industry, and to fulfil the needs of Internet
application developers162.

• Java buzzwords163

In the scope of this document, let us analyze the two main Java characteristics164 in
detail, and briefly describe the others:

! Architecture neutral

The independence of the architecture is fundamental to allow the same program to
run virtually anywhere, without special adaptation tasks. For Java, this is guaranteed
by the Java platform components seen above. This is seen as a menace by
companies like Microsoft, which tried to block the compatibility of the JVM with recent
Windows versions. This was a strategy to force the Windows customers to use the
Microsoft platform - .NET – and luckily has been avoided by the justice.

! Portable

Portability is closely related to the architecture independence. It describes the
characteristics of the language that must remain unchanged independently of the
platform, like data types (e.g. character, byte, integer). Even if this may seem simple
at first sight, this is not true for most of the languages, in which one of the activities
when porting a program from one platform to another is the adaptation of the data
types. Java did not make this mistake. The data types have specific, defined lengths
regardless of the system.

The Java virtual machine is based primarily on the POSIX interface specification – an
industry-standard definition of a portable system interface. Implementing the Java
virtual machine on new architectures is a relatively straightforward task.

! Simple – Reduces software development cost and time to delivery

! Object oriented – To function within increasingly complex, network-based

environments, programming systems must adopt object-oriented concepts

! High performance – Obtained from the compiled bytecode

! Interpreted – The bytecode is transformed into executable code during the

execution of the program

! Multithreaded – Multiple tasks can be executed in parallel, improving overall

system performance

! Robust – Provides a solid, reliable environment in which to develop software

! Dynamic - Classes are linked only as needed. New code modules can be linked

in on demand from a variety of sources, even from sources across a network.

162 Source: bibliography 13
163 Source : http://java.sun.com/docs/white/langenv/
164 Source: http://java.sun.com/docs/white/langenv/Intro.doc2.html#379

Open Technologies for An Open World Jean Binder

 64

• Applets165

Sun's HotJava browser showcases Java's interesting properties by making it possible
to embed Java programs inside HTML pages. These programs, known as applets,
are transparently downloaded into the HotJava browser along with the HTML pages
in which they appear. Before being accepted by the browser, applets are carefully
checked to make sure they are safe. Like HTML pages, compiled Java programs are
network and platform-independent. Applets behave the same way regardless of
where they come from, or what kind of machine they are being loaded into and run
on.

With Java as the extension language, a Web browser is no longer limited to a fixed
set of capabilities. Programmers can write an applet once and it will run on any
machine, anywhere. Visitors to Java-powered Web pages can use content found
there with confidence that it will not damage their machine.

• Open Belgian Cathedrals

According to Tony Mary166, openness and flexibility are the main Java advantages.
This openness could be widened further, with a creation of a unique media
technology by a group of companies. This could be compared – accorded to him – to
the cathedrals. In opposition to the medieval castles – strongly protected and closed,
and almost destroyed today – the Cathedrals always remained open and survived.

According to Edy Van Asch167, Open Source is the main Java trend. Java has always
been closely related to Open Source, but since 2001 this relationship became
stronger. Examples are Eclipse (Open Source Java Development environment), Junit
(Open Source Test Structures), Jboss (Open Source Application Server) and Jini.

Jini network technology168 is an open architecture that enables developers to create
network-centric services – whether implemented in hardware or software – that are
highly adaptive to change. Jini technology can be used to build adaptive networks
that are scalable, evolvable and flexible as typically required in dynamic computing
environments. Jini Offers an open development environment for creative
collaboration through the Jini Community, and is available free of charge with an
evergreen license. It extends the Java programming model to the network (by moving
data and executables via a Java object over a network) and enables network self-
healing and self-configuration.

165 Source : http://java.sun.com/docs/books/vmspec/html/Introduction.doc.html
166 New director of VRT (Belgian public television), in an interview to Datanews n°37, 29/11/2003
(Page 1)
167 Profession Leader Technology Engineering at CGE&Y, in an interview to Datanews n°37,
29/11/2003 (Page 10)
168 Source : http://wwws.sun.com/software/jini/

Open Technologies for An Open World Jean Binder

 65

3.2.2. .NET

.NET (read as “dot-net”) is both a business strategy from Microsoft
and its collection of proprietary programming support for the Web
services169. Its goal is to provide individual and business users
with a seamlessly interoperable and Web-enabled interface for

applications and computing devices and to make computing activities increasingly
Web browser-oriented. The .NET platform includes servers (running Microsoft
Windows), building-block services (such as Web-based data storage), device
software and Passport (Microsoft's identity verification service). Functionally the .Net
architecture can be compared to the Java platform. In the scope of our study, they
are completely different: Java aims to give the companies and users the liberty of
choosing the hardware and software platforms. .NET is tightly related to Microsoft
Windows operating systems (the only software platform supported) and favours the
usage of complementary Microsoft products such as Internet explorer and the Office
suite. Omnipresence is the goal, and the weapon is the relative complexity of Java
platform.

The full release of .NET is expected to take several years to complete, with
intermittent releases of products such as a personal security service and new
versions of Windows and Office that implement the .NET strategy coming on the
market separately.

• Dot objectives170

According to Bill Gates, Microsoft expects that .NET will have as significant an effect
on the computing world as the introduction of Windows. One concern being voiced is
that although .NET's services will be accessible through any browser, they are likely
to function more fully on products designed to work with .NET code.

! The ability to make the entire range of computing devices work together and to

have user information automatically updated and synchronized on all of them
! Increased interactive capability for Web sites, enabled by greater use of XML

rather than HTML
! A premium online subscription service, that will feature customized access and

delivery of products and services to the user from a central starting point for the
management of various applications, such as e-mail, for example, or software,
such as Office .NET

! Centralized data storage, which will increase efficiency and ease of access to
information, as well as synchronization of information among users and devices

! The ability to integrate various communications media, such as e-mail, faxes, and
telephones

! For developers, the ability to create reusable modules, which should increase
productivity and reduce the number of programming errors

169 See chapter 3.3 on page 72 for more info about web services
170 Source: Bibliography 92

Open Technologies for An Open World Jean Binder

 66

• Dot components

Figure 22 - The Components of Microsoft .NET-Connected Software171

! Smart clients: “Smart” is the term used by Microsoft for client computers using

one of its proprietary operating systems: Microsoft Windows XP, Windows XP
Embedded, and Windows CE .NET. All other clients platforms are excluded from
the .NET architecture.

! XML Web services let applications share data, and invoke capabilities from other

applications without regard to how those applications were built, what operating
system or platform they run on, and what devices are used to access them. While
XML Web services remain independent of each other, they can loosely link
themselves into a collaborating group that performs a particular task.

! Developer Tools – Microsoft Visual Studio .NET (with high-level programming

languages like Visual Basic, Visual C++ and C#) and the Microsoft .NET
Framework (The application execution environment, which include components
like the common language runtime, a set of class libraries for building XML Web
services, and Microsoft ASP.NET) aim to supply a complete solution for
developers to build, deploy, and run XML Web services.

! Servers – In opposite to the portability of Java applications, only servers running

Microsoft operating systems (Windows 2000 Server, Windows Server 2003, and
the .NET Enterprise Servers) are certified to fully obtain good results from the
.NET platform.

171 Source: Bibliography 90

Open Technologies for An Open World Jean Binder

 67

• Dot integration

Microsoft considers XML “deceptively simple”172, and would certainly prefer a
complex and proprietary solution to integrate the .NET platform – composed by
Microsoft operating systems and basic software – with other vendors environments.
XML is revolutionizing how applications talk to other applications — or more broadly,
how computers talk to other computers — by providing a universal data format that
lets data be easily adapted or transformed. Therefore, Microsoft saw in XML an
opportunity to connect its completely proprietary platform with other proprietary or
open environments. As an example, XML is extensively used by Microsoft Host
Integration Server 2000 to provide application, data, and network integration between
.NET platforms and host systems (Mainframe and AS/400 environments, considered
“legacy” by Microsoft, and estimated to contain 70 percent of all corporate data).

Figure 23 - Microsoft Host Integration Server173

172 Source : Bibliography 87
173 Source: Bibbliography 93

Open Technologies for An Open World Jean Binder

 68

3.2.3. Java.NET

The comparison between Java and .net is not only technical. Economical and cultural
aspects are far more important. In this chapter, we will analyse some of the
differences and exploit possible alternatives.

• Co-existence

Considering the easy integration of both .NET and Java platforms, by the usage of
XML and Web services, many analysts suggest a co-existence of both platforms in
most companies. Scott Dietzen174 foresee this to happen in the next five years. One
of his arguments is the current .NET power in the client-side and J2EE in the server-
side. But he also prophesises that the integration of Java to the companies culture,
and its implementation should become easier, before Microsoft .NET technology is
mature enough to attract large customers in projects where reliability is too important.
Nico Duerinck175 agrees with the co-existence to be possible, mainly if Web services
are implemented, even if a reduced number of companies are currently using both
technologies.

• Portability

For new projects, Java may be clearly preferred to ensure the portability of the
applications. It guarantees that a server may start small, running Windows operating
systems, and move to other platforms like Linux or UNIX to satisfy more advanced
requirements like parallelism, high-availability and reliability. An application
developed under .NET will always require a windows-based server to be able to
exploit all its capabilities.

Additionally, as described by Dietzen, the Java community is composed by more
than 100 vendors, working to improve the Java features and developing
complementary and concurrent solutions. The innovation resulted is far beyond what
a single company can afford.

• Symbiosis

According to David Chappell176, Windows DNA (seed of .net) and Java appeared
together in 1996. Since then, J2EE was built using windows DNA interesting
concepts, and .net framework incorporated Java-like features. This “mutual and
cross-pollenization” helps innovation in both senses and minimize the problem of
“single source of creativity”, suggested by Dietzen.

• Infrastructure Costs

According to Duerinck, most of the companies will try to keep the existing
infrastructures, and will tend to implement .net platforms in windows systems and

174 Scott Dietzen, BEA Systems CTO, interview to Datanews n°37, 29/11/2002, Page 6
175 Nico Duerinck, EDS, interview to Datanews n°37, 29/11/2002, Page 10
176 David Chappell, independent ;Net specialist, interview to Datanews n°08, 28/02/2003, Page 3

Open Technologies for An Open World Jean Binder

 69

Java for all the other architectures. It is often a simple financial decision. If a
Microsoft license exists, it will probably be kept and exploited. The cost of .net
framework in existing windows systems is very low. Some Java application servers
can be rather expensive, however cheap and open source alternatives exist.

The training costs and simplification of the hardware and operating systems diversity
is also an important point to be considered.

• Complementary products

Products are often developed by independent companies to be compatible with both
platforms. This is the case of Compuware development products177 and Real
Software development architecture178. This can also minimize the costs to transport
an application from one platform to another, by reducing the effects of .net
proprietary philosophy.

3.2.4. The outsiders: LAMP

The term LAMP (Linux, Apache, MySQL, Perl / Python / PHP) refers to a set of Open
Source software tools that allow for the development and deployment of web
applications179.

All of the components of LAMP can be downloaded without any costs. The support is
done by a network of developers aggregated in online communities like “OnLamp180”
to help each other get the most out of LAMP. Training is available from a wide array
of providers, and many consulting firms offer advanced capabilities for those
businesses that require sophisticated LAMP development.

I have used LAMP to develop my web site181. All dynamic pages have been
developed in PHP, and the databases in MySQL. The website is hosted by
ALL2ALL182 on Linux and Apache servers. The usage of Open Source allows the
web hosting to be performed with low costs. The learning cost was a book about

177 Source: Datanews n°08, 28/02/2003, Page 8
178 Source: Datanews n°37, 29/11/2002, Pages 2-3
179 http://www.onlamp.com/pub/a/onlamp/2001/01/25/lamp.html
180 http://www.onlamp.com/
181 www.k-binder.be
182 www.all2all.org

Open Technologies for An Open World Jean Binder

 70

PHP and MySQL183 complemented by a large amount of free online information, from
FAQS to complete systematic training. The learning time was reduced by using the
large amount of online examples. Most of the sites using LAMP provide the sources
used for their development.

! Linux

See chapter 2.2.3 on page 30 for a large discussion on Linux.

! Apache184

The most widely used web server software in the world185, Apache can be run on a
variety of operating systems, including AIX, Digital UNIX, FreeBSD, Irix, Mac OS X,
Netware, OpenBSD, Solaris, SunOS, Windows, and of course, Linux. Apache's
security record is far better than that of Microsoft IIS.

! MySQL186

This database was built with the philosophy that a web database should be lean and
fast. It doesn't incorporate the diverse array of application server features that Oracle
and Microsoft database tools do, instead focusing on core performance and leaving
enhanced functions to scripting languages. MySQL runs on a variety of operating
systems, including AIX, FreeBSD, Mac OS X, Solaris, Windows, and Linux. It is well
known for its reliability; while the recent "Slammer" worm that crippled much of the
Internet was spread through Microsoft SQL Server, it did not affect MySQL
databases.

! Perl187

This scripting language was invented to help overworked system administrators. It
still performs that function admirably well, but is also often used in web development
for things like dynamic forms, server monitoring, and database integration. Perl runs
on a wide variety of operating systems.

! PHP188

Developed from the ground up as a Web developer's language, PHP is easy to use
and executes very quickly. Skilled developers can use PHP to build everything from
online forms to complex database-driven web applications. PHP is extremely
popular, runs on a variety of operating systems, and is most often used in
conjunction with MySQL.

One of the most powerful PHP features is the extensive library of functions, open to
be expanded by volunteer work. It contains functions to address any possible need,
to communicate with a large range of databases, and to read and write files in many
different formats, like PDF. The documentation is written by volunteer work and

183 See bibliography 11
184 http://www.apache.org
185 To see the updated statistics, please refer to http://www.netcraft.com/survey/
186 http://www.mysql.com
187 http://www.perl.org
188 http://www.php.net

Open Technologies for An Open World Jean Binder

 71

consists in examples supplied by the community. For any developer trained in other
languages the learning by example process is extremely efficient.

! Python189

A general-use high-level language, Python is often used to tie different backend
pieces together. It lends itself particularly well to Java/XML integration and
development of dynamic content frameworks. Python runs on several operating
systems.

! Trends

To give a large impulse to this initiative, Sun unveiled a dual-processor server -
LX50 – that runs the new Sun distribution of the Linux OS. The server will run Intel
x86 chips and will be available not only with Linux but also with an Intel-enabled
version of Sun's own Solaris operating system. In a briefing with analysts and press,
Sun's new executive vice president of software, Jonathan Schwartz, further detailed
the vendor's Linux strategy. While Sun will keep pushing Solaris in the data centre
and J2EE for middle-tier business logic, it is making a major bet on LAMP as the
application environment of choice at the edge of today's corporate infrastructures190.

A company called BD-X used LAMP as the basis for its web services strategy. BD-
X's chief technology officer Kevin Jarnot started prototyping a wide-area content-
creation environment that would allow BD-X to provide XML-based financial content
on demand for a wide variety of subscription customers. "At first, our decision to use
Open Source was to build a prototype without a lot of cost," according to Jarnot. But
after his prototype was built, Jarnot found, "it would actually be fine for [the] project's
required performance and scalability."

BD-X founders reasoned that if they could transcribe these calls, mark them up into
XML, and then offer them to business customers, they might just have a viable
business. In the end, Jarnot says that 60 percent of the reason BD-X ended up with
an Open Source solution was because of cost. Thirty percent, he says, was because
"we were doing some pretty bleeding edge stuff... if we had been using proprietary
software, it would have been a lot harder to do the integration." Oh, and the last ten
percent of why BD-X went with Open Source? "Coolness factor," says Jarnot.191

Jarnot said he expected BD-X would eventually need to port the system to a more
production ready commercial environment like Solaris running Macromedia's
ColdFusion. But, Jarnot said, it turned out that his Open Source prototyped version
was good enough to take into live production. Using the standard Open Source
LAMP stack as a backend platform, they also decided to use the Open Source
ELVIN message-oriented middleware to filter the transcriptions and deliver them to
customers. On the XML side, the developers used Jedit (Open Source Java text
editor) for XML markup and editing. Jarnot mentions quite a few options he is
considering for using J2EE and Microsoft .NET technologies in conjunction with his
Linux, PHP and Apache systems. What proves again the clear advantages of the
symbiosis theory, between commercial, proprietary and open platforms.

189 http://www.python.org
190 Source: http://www.internetwk.com/webDev/INW20020813S0008?ls=TW_090302_fea
191 Source: Bibliography 95

Open Technologies for An Open World Jean Binder

 72

3.3. Web Services

According to Brad Murphy192, “by now, virtually every company is fully aware and
engaged in various stages of integrating the Internet into their business model to help
serve customers better. A key part of every integration strategy is the use of Web
services. The phenomenal growth of Web services is made possible by open
standards that are built into the products that comprise the Web services
infrastructure”.

With a standards based infrastructure, companies have the ability to use the Web
rather than your own computer for various services, linking applications and
conducting B2B or B2C commerce regardless of the computing platforms and
programming languages involved. In a way, Web services are the natural evolution of
the Internet – again all based on open standards. At this point, Web services may
seem straightforward, but a critical issue companies face is choosing the best
enterprise/strategic development platform for creating and deploying these new
interoperable applications.

• Open standards

Several options are available, but the key thing to remember is that any Web
services development platform – by definition – must follow open standards to be
interoperable, be innovative with rich and robust functionality and work properly in
responding to and addressing the complex needs of a typical enterprise organization.
The W3C has working groups focused on refining the SOAP 1.1 and WSDL 1.1
specifications, which should improve things considerably. The XML Protocol Working
Group is working on SOAP 1.2 while the Web Services Description Working Group is
creating the WSDL 1.2 specification. Meanwhile, the IETF and OASIS are also
working on standardizing Web service specifications, including DIME and WS-
Security.

While work at the W3C focuses on new versions of the core Web services
specifications, a separate organization is focusing more attention on interoperability.
The Web Services Interoperability Organization (WS-I) is focused on defining best
practices for ensuring Web service interoperability. The WS-I Basic Profile Working
Group is currently developing a set of recommendations for how to use the core Web
service protocols like SOAP 1.1 and WSDL 1.1 to maximize interoperability.

The clear leaders in the race to deliver Web services functionality are IBM and the
entire Java / J2EE vendor community. They recognized nearly five years ago the
need to support standards that provide customers the flexibility of choice and as a
result, devoted serious resources to creating its solution. As discussed on chapter
3.2.2, the Microsoft approach is very different when it comes to implementation. IBM
and the Java community are committed to a Web infrastructure based on open
standards – especially Java and Linux – to make disparate systems work together.
Microsoft presents .Net as an open platform that supports Web standards, but it is
still a highly proprietary technology that runs solely on the Windows platform.
Microsoft supports Web standards interoperability – such as XML and SOAP – but
only within the proprietary Windows framework that is not easily portable.

192 Source: Bibliography 85

Open Technologies for An Open World Jean Binder

 73

• Proprietary platforms

Locking-in Web services to the Windows platform may be a perfectly acceptable
solution for a small or mid-tier business. However, for larger organizations, this
approach is not only impractical but also caries with it risks and hidden costs when
addressing the integration and collaboration challenges of significant internal
applications as well as a large, dispersed organization. It's important to consider that
almost every large company has a rich, complex heterogeneous computing
environment.

Another critical factor to consider is that a commitment to only one operating
environment such as Windows means companies lose the ability to choose and
negotiate among Web service application vendors for the best function and price. Will
companies really want to marry their Web services application development –
including the possibility of a substantial portion of their future Internet-based revenue
and vital customer relation activities – so closely to Microsoft?

Microsoft's commitment to standards and interoperability in the Web services world is
both welcome and critical to large-scale adoption in the marketplace. The fact that
Microsoft has embraced standards and interoperability with the Java world is
evidence that Microsoft recognizes customers will no longer tolerate proprietary
solutions. It's also true that the .NET offerings will likely capture a large segment of
the existing pool of Microsoft developers and customers. Unfortunately for larger
customers however, this won’t produce increased platform choice or vendor flexibility.

If future Web usage, cost savings and revenue generation is only half of what is
projected, it is likely that most companies will continue their investment and support
of Java as their strategic platform. Will .NET gain acceptance and find an important
role to play in a Java/Standards-based world? Absolutely, but only if Microsoft
delivers on their promise to truly support standards. Which raises an interesting
question – does history give anyone reason to believe that Microsoft is truly
interested in customer choice and flexibility based on vendor neutral standards?
Ignorance is bliss.

• Open source193

Not only big names (IBM, Microsoft, BEA) are behind web services software. Open
Source software and tools exist such as the Apache Tomcat servlet engine194, the
JBoss J2EE-based server195 and Apache AXIS (a Java toolkit for building and
deploying Web service clients and servers)196.

According to Thomas Murphy, "Consider the fact that Web services themselves are
built on top of Open Source technologies like HTTP and TCP/IP, people don't realize
the amount of Open Source technology that underlies everything that they do. Many
companies use Open Source technology areas other than Web services without
giving it a second thought, and so should open themselves to using the technology
for Web services as well. Look at the Internet — the most predominant server is
Apache, which is Open Source, and so people don't really have problems running

193 Source: Bibliography 94
194 More info on http://jakarta.apache.org/tomcat/
195 More info on http://www.jboss.org
196 More info on http://xml.apache.org/axis

Open Technologies for An Open World Jean Binder

 74

Open Source software. And look at the underlying protocols; they're all Open Source
as well."197

Those involved in the Open Source community, not surprisingly, tout the benefits of
Open Source tools for Web services development. Marc Fleury, founder and
president of JBoss says that many commercial Web service tools are "pricy
implementations rushed to the market with poor quality." He believes that because of
this, most commercial vendors will disappear over time, but that Open Source
technology will survive because of its superior quality. Additionally, he adds, Web
services technology is a "moving target. Many implementations are fighting for
standard status. Going with a free software implementation guarantees you the
maximum probability of going with a standard." It's not only the Open Source
community and analysts who believe that Open Source technologies are the best
solution to Web services development — those involved in Web services creation
and deployment are backers as well. For example, FiveSight Technologies198
provides comprehensive Web services workflow integration and software tools, and
they've built those tools using Open Source software.

Paul Brown, president of FiveSight, says that "Without using Open Source, we
wouldn't have been able to launch our company. If FiveSight on its own, or any other
company, had to implement XML schema or WSDL or any other number of Web
services technologies in combination, it would be an impossible task. The Open
Source community is a catalyst for innovation in software, and so I know things like
where we can get a good Open Source implementation of a transaction manager. It's
an opportunity to solve a hard problem by building on work from the community at
large. We've used Open Source in our development work, from the first piece of
software we deployed. We didn't have the money to pay for developers and staff,"
and so instead turned to Open Source software, which already had the software
available, to do the job.

Murphy also notes the drawbacks. When companies devote themselves to using
Open Source technology for Web services, they're taking on responsibility for product
support and management, since there is no commercial vendor that takes care of
that for them. That means no technical support, and no clear upgrade paths. There
may also be legal issues involved with Open Source licenses, and so businesses
need to have their legal staffs examine the implications of using Open Source before
committing.

Another issue is that the Open Source community has yet to fully embrace Web
services technologies with open arms. JBoss's Fleury, for example, says that "Web
services isn't real so far. We see zero dollars in Web services." There are signs,
however, that that is changing and an increasing number of Open Source tools and
developers have turned their attention to Web services.

197 Thomas Murphy, senior program director for Meta Group consulting firm
198 www.fivesight.com

Open Technologies for An Open World Jean Binder

 75

3.4. Agile Development

Agile Development199 is a collection of methods and practices aimed to reduce the
time and effort required to develop an application, through communication, simplicity,
feedback, courage and humility. Some of its processes are Adaptive Software
Development200, Crystal201, Scrum202, Xbreed203, Dynamic Systems Development
Method (DSDM)204 and Usage-Centered Design (UCD)205. However, the best known
agile method is XP (Extreme Programming).

3.5. Extreme Programming

In the early 1990s, a man named Kent Beck was thinking about better ways to
develop software. Kent worked together with Ward Cunningham to define an
approach to software development that made every thing seem simple and more
efficient. Kent contemplated on what made software simple to create and what made
it difficult. In March of 1996, Kent started a project using new concepts in software
development: the result was the Extreme Programming (XP) methodology. Kent
defined Communication (programmers communicate with their customers and fellow
programmers), Simplicity (the design is simple and clean), Feedback (quick feedback
by testing the software starting on day one), and Courage (the programmers are able
to courageously respond to changing requirements and technology) as the four
values sought out by XP programmers.

Extreme Programming (XP) is actually a deliberate and disciplined approach to
software development, and it’s successful because it stresses customer satisfaction.
The methodology is designed to deliver the software required by the customer in the
target timeframe, and empowers the developers to confidently respond to changing
customer requirements, even late in the life cycle. This methodology also
emphasizes teamwork. Managers, customers, and developers are all part of a team
dedicated to delivering quality software. XP implements a simple, yet effective way to
enable groupware style development.

XP is an important new methodology for two reasons. It is a re-examination of the
software development practices used as standard operating procedures, and it is one
of several new lightweight software methodologies created to reduce the cost of
software. XP goes one step further and defines a process that is simple and
enjoyable.206

199 See http://www.agilelogic.com/resources.html
200 See http://www.adaptivesd.com/
201 See http://www.crystalmethodologies.org/
202 See http://www.controlchaos.com/
203 See http://www.xbreed.net/
204 See http://www.dsdm.org/index.asp
205 See http://www.foruse.com/
206 Source: http://www.extremeprogramming.org/

Open Technologies for An Open World Jean Binder

 76

According to Kent, software development is a difficult task and the efforts should be
concentrated in the four main activities:207

! Listening – Consists in obtaining information from clients, users, managers, and

business people. The problem must be identified and the data must be collected
for testing purposes.

! Designing – Some contradictory opinions exist around this topic. Some think that

XP consists in low design, short-sighted. As this is far from a preferred option, let
us consider the other opinion stream: the design must be performed by the
developer and be validated by the user, but the time spent shall not be extremely
high.

! Coding – The heart of development.

! Testing – Validate the application, with the help from the customer in the final

phases.

3.5.1. Extreme Programming and Open Source208

• XP Open Values

The four XP values fit with the hacker’s ethic:

! Most open source projects rely on communications. As normally the teams are

geographically dispersed, the exchange of written messages (via e-mail,
newsgroups and forums) may have a positive effect as it allows a record of the
discussions and the comment from the community.

! Simplicity is often present – and sometimes even exaggerated – in open source

projects, which are normally started to satisfy basic needs of one person or one
part of the community.

! The feedback is one of the most important features of open source development,

as the responses from the community can be based on the functionality (new
features required, conceptual and technical problems) but are often
recommendations on the programming techniques (via the sharing of the source
code) or suggested new routines, functions or updates.

! It normally takes a lot of courage to start a new open source project, as the

source code may be analysed and criticised by a huge number of peer
programmers, but also to join an ongoing project and commit to using the spare
time to perform the coding.

• XP Open Practices

! Planning - XP assumes you have a customer (or a proxy) as part of the project.

Open Source projects generally don't have a well defined "customer". Nor is there

207 Kent Beck, quoted by Wikipedia.org.
208 This chapter has been freely adapted from the bibliography 101

Open Technologies for An Open World Jean Binder

 77

a single voice for their users. Instead, Open source projects tend to be guided by
a combination of the vision of their key developers, and the "votes" of their other
developers and users.

! Small releases - Release early, release often. This is a current practice in XP and

Open Source projects

! Testing - Automated tests are a key part of XP, as they give the courage for re-

factoring and collective ownership. They are what allow the small releases
(release early, release often XP and Open Source principle) to happen. Although
many Open Source projects include test suites, this is possibly the best XP
practice to be adopted. An Open Source project that incorporated XP style tests
would have enormous advantages. It would require less oversight and review and
it would encourage more people to contribute because they would have
immediate feedback on whether their changes worked or not. Moreover, it would
ensure that as the software changed, grew and ported, it wouldn't break.

! Re-factoring – “Re-factoring is the process of changing a software system in such

a way that it does not alter the external behaviour of the code yet improves its
internal structure."209 Many Open Source projects are reviewed and re-factored,
but often reluctantly. In XP re-factoring is recommended all the time, so that the
design stays as clean as possible. The fear, of course, is that something will be
broken, but this is counteracted by having automated tests, and pair (or peer)
programming.

! Pair programming – One of XP recommendations is to always have two persons

working in the same programs. This is rather difficult to achieve in the real world
of commercial development, but compensated by the Open Source peer
programming, with an exponential number of programmers revising important
projects.

! Collective ownership - In XP collective ownership means that anyone can change

any part of the project – programmers are not restricted to a certain area of
expertise. Open Source projects normally work differently, having restrictions on
the persons allowed to make changes directly, and the process required for
submitting changes. This is necessary because of the large numbers of
contributors. However, in the Open Source software all the parts of the software
are visible to every programmer, who can always request access to change
“restricted” parts of the code in special cases.

! Continuous integration - Some Open Source projects integrate contributions

continuously and others group them into releases. Some projects allow anyone to
commit changes whereas others require changes to be submitted for review.
Nevertheless, on an individual level, most hackers do practice continuous
integration.

! 40-hour week - It’s hard to apply this to hackers that are working in their spare

time. The main objective of this XP principle, however, is satisfied by the Open
Source definition: motivation.

209 Quoted from “Martin Fowler, Refactoring” : www.refactoring.com

Open Technologies for An Open World Jean Binder

 78

! On-site customer - Most Open Source projects don't have a physical "site" or a
specific "customer". However, the essence of this practice is to have good
communications between programmers and users, and this has already been
explained.

! Coding standards - Most Open Source projects adhere to coding standards, for

the same reasons that XP requires them: To allow different programmers being
responsible for the same code at different times. On smaller projects, the
standards are often informally enforced by the key developer, who adapts the
contributions into his own style. Large projects usually have an explicit set of
standards.

• Open Source XP software

! JUnit210 is a regression testing framework written by Erich Gamma and Kent

Beck. It is used by the developer who implements unit tests in Java. JUnit is Open
Source Software, released under the IBM's Common Public License Version 1.0
and hosted on SourceForge

! CurlUnit211 is a an instance of the xUnit architecture commonly used as a testing

framework within the Extreme Programming methodology (XP) methodology. Like
Junit, CurlUnit is Open Source Software, released under the IBM Public License
and hosted on SourceForge.

Other resources for Open Source development under XP rules may be found in
http://www.xprogramming.com/software.htm.

• Final word

Open source software can be used in Extreme Programming development, and XP
concepts can be adopted by Open Source projects. The design part should be given
more importance, tough, with the integration of XP, Open Source and MDA. The goal
s being to reduce the time and increase the quality of open source development, and
to reduce costs and improve efficiency and portability of applications developed
under XP principles.

3.6. Open decision212

A good starting point in deciding whether to use Open Source software is to take a
look at what phase a company is, regarding the development of Web services, says
Thomas Murphy, senior program director for Meta Group consulting firm: "Open
Source is ideal for when you need to keep up with where technology is headed, and
for that portion of your technical staff working in future technologies. It's well suited
for these early stages. But when you're looking to use something for production and
development, that requires a stable release path. So I think that often, people look for
commercial tools at that point."

210 See http://www.junit.org/index.htm
211 See http://curlunit.sourceforge.net/
212 Source: Bibliography 94

http://www.xprogramming.com/software.htm

Open Technologies for An Open World Jean Binder

 79

Another deciding factor is money. Open Source may be the perfect solution for
companies that haven't decided yet to go full-bore into Web services, or those that
are operating on a shoestring or looking to hold down costs,.

An exceedingly important issue, but one that is easy to overlook is the "cultural"
factor, says Eric Promislow, senior developer specializing in Web services with
ActiveState, which provides Open Source-based applications, tools and support. "Go
with Open Source for Web services development if your staff already uses Open
Source for other purposes, and want to stay with the tools they know and love," he
says. "They know how it works, and they know how to get support for it from the
Open Source community." They'll be far more productive — and happier in their jobs
— than if they had to use commercial tools.

Promislow adds that Open Source software is an ideal way for companies to dip their
toes in the water when it comes to Web services development, and so is suited for
companies still deciding whether to seriously pursue Web services. "They can make
no upfront investment except in time," he says, and so can inexpensively develop
pilot projects.

Murphy warns that there are a series of not-obvious issues that companies should be
aware of when they ultimately decide to go the Open Source route. "Businesses
need to understand that in using Open Source, they are also taking on support and
product management responsibilities," he warns. "You need someone to track where
the bug fixes are, and know what the newest features are likely to be. It's not like a
commercial product where someone makes money off support and so provides it for
you — you have to do it yourself." Of course the existence of service companies
around Open Source is increasing and reducing the effect of this problem.

Another costly activity may be installing the software. Not all Open Source software
have easy installation routines, and often a commercial implementation of Open
Source software is required to ensure the community support, the low cost, and
technical support.

Open Source software is built by community, and is a community effort, and so
businesses have to decide up-front how involved their developers can be in that
community. Should companies allow developers not only to work with Open Source
software, but also participate in the community, and in the community development of
the software? Will managers allow developers to spend company time working on
Open Source community projects? The rules shall be put in place for this ahead of
time, to avoid problems in later project phases.

Open Technologies for An Open World Jean Binder

 80

4. Common structures for data exchange

4.1. Content

A basic concept of computer sciences – explained in the very first class of any good
introduction course213 – is that any information is stored in a computer by using the
binary digits (bits). Only zeroes and ones, and there must be basic rules to translate
them to alphabetic and numeric symbols, comprehensible by the human race and -
for the multimedia environments - to transform them into formatted text, images,
sound, etc. This is the realm of codes and formats.

4.1.1. Character Codes

When the first ideas about networking appeared, data was not standardized. Each
proprietary system used a different form of data representation, considering only the
needs for local applications and, in the best cases, the local languages. Some
standardization works started, and different standards have been implemented in
parallel by computer manufacturers and independent organizations. The most
important ones (in terms of current adoption) are briefly explained here.

• EBCDIC

EBCDIC214 is a binary code for alphabetic and numeric characters that IBM
developed in the 1960s together with the first mainframe architecture, the
System/360. This code is still used to represent the information in all IBM mainframe
platforms, with each alphabetic or numeric character represented with an 8-bit binary
number. 256 possible characters (letters of the alphabet, numerals, and special
characters) can be defined, and different tables exist for country-specific characters.

It is a code elaborated to fit programming needs. As it is intimately related to the
architecture, the IBM Assembler language could use the logical distribution of the
numbers and letters in EBCDIC to make validations, translations and arithmetical
operations.

• ASCII

ASCII (American Standard Code for Information Interchange) was developed in 1963
by the American National Standards Institute (ANSI215). It is the most common format
for text files in computers and is the American National Version of ISO/IEC 646. Each
character is represented with a 7-bit binary number (a string of seven 0s or 1s). 128
possible characters are defined.

213 Source: Bibliography 24
214 EBCDIC is pronounced either "ehb-suh-dik" or "ehb-kuh-dik" and stands for Extended Binary
Coded Decimal Interchange Code.
215 ANSI is presented on page 128

Open Technologies for An Open World Jean Binder

 81

UNIX and DOS-based operating systems use ASCII for text files. Even IBM's PC and
workstation operating systems use ASCII instead of IBM's proprietary EBCDIC.
Conversion programs allow different operating systems to change a file from one
code to another.

• ISO

There is a joint technical subcommittee of ISO and IEC to deal with information
technology to promote the standardization of graphic character sets and their
characteristics, associated control functions, their coded representation for
information interchange and code extension techniques. It is identified as ISO/IEC
JTC1/SC2, which published several standards216.

• Unicode

In 1991, the ISO Working Group responsible for ISO/IEC 10646 and the Unicode
Consortium decided to create one universal standard for coding multilingual text.
Since then, they have worked together very closely to extend the standard and to
keep their respective versions synchronized.

Officially called the “Unicode Worldwide Character Standard”, Unicode217 is a system
for the interchange, processing, and display of the written texts of the diverse
languages of the modern world, also supporting many classical and historical texts in
a number of languages. Currently, the Unicode standard contains 34,168 distinct
coded characters derived from 24 supported language scripts. These characters
cover the principal written languages of the world and additional work is underway to
add the few modern languages not yet included. Although the character codes are
synchronized between Unicode and ISO/IEC 10646, the Unicode Standard imposes
additional constraints on implementations to ensure that they treat characters
uniformly across platforms and applications. To this end, it supplies an extensive set
of functional character specifications, character data, algorithms and substantial
background material that is not in ISO/IEC 10646.

For each character defined in Unicode there is an assigned code point: a
hexadecimal number that is used to represent that character in computer data.

4.1.2. Multimedia

Several open and proprietary formats have been defined for the exchange of
multimedia documents. To discuss them is out of the scope of this document, and
more references may be found on the Internet:

Audio: http://www.diffuse.org/audio.html
Video: http://www.diffuse.org/video.html
Images: http://www.diffuse.org/raster.html

216 A list can be found on :
http://www.iso.ch/iso/en/stdsdevelopment/tc/tclist/TechnicalCommitteeStandardsListPage.TechnicalCo
mmitteeStandardsList?COMMID=23
217 http://www.unicode.org/

http://www.diffuse.org/audio.html
http://www.diffuse.org/video.html
http://www.diffuse.org/raster.html

Open Technologies for An Open World Jean Binder

 82

4.1.3. Formats for the Document Interchange218

Paper documents are linear, normally read in the order specified by the author.
Hypertext documents, on the other hand, are structured in a non-structured way, to
allow the information to be obtained in a sequence determined by the areas of
interest of the reader. The hypertext structures are composed by nodes (the
documents) and links (the references linking two different nodes, or two different
segments of the same node)219. The evolution of the hypertext documents is briefly
explained here:

• SGML

SGML provides an object-oriented method for describing documents (and other
information objects with appropriate characteristics). The standard defines a set of
semantics for describing document structures, and an abstract syntax of formally
coding document type definitions. Apart from defining a default (concrete) syntax,
based the ISO 646 code set, that can be used for text and markup identification when
no alternative is specified, SGML does not suggest any particular way in which
documents should be structured but allows users to define the structure they require
for document capture or presentation.

SGML has made its principal impact in markets making use of structured textual
information. This has particularly included those markets managing and producing
technical documentation, although not exclusively so.

Its take up elsewhere has steadily increased, especially following the arrival of the
World Wide Web, where it has been used as the formal basis for HTML and XML.

• HTML

HTML is the data format that has made the World Wide Web possible. Its first
proposal has been written by Tim Berners-Lee (member of CERN in Switzerland) and
described a mark-up language that was able to execute in a heterogeneous
distributed environment. HTML documents are SGML documents with generic
semantics that are appropriate for representing information from a wide range of
domains. HTML markup can represent hypertext news, mail, documentation, and
hypermedia; menus of options; database query results; simple structured documents
with in-lined graphics; and hypertext views of existing bodies of information.

HTML has been in use by the World Wide Web (WWW) global information initiative
since 1990, when the MOSAIC program has been created by the University of
Illinois, based on Berners-Lee’s proposal. Version 2.0 (RFC 1866) roughly
corresponds to the capabilities of HTML in common use prior to June 1994.

An extended version (4.0) of the HTML specification was released to the public on
8th July 1997 and became an approved W3C Recommendation on 18th December

218 http://www.diffuse.org/docs.html
219 For more information, see bibliography 27. For an anthropological view of the hypermedia
environment, see the excellent study from Pierre Levy (bibliography 8 – page 45 and bibliography 9 –
page 200).

Open Technologies for An Open World Jean Binder

 83

1997. The extensions include facilities for multilingual data presentation, interactive
elements and objects and control of presentation using cascading style sheets.

• XHTML

The Extensible Hypertext Markup Language (XHTML™) is a family of current and
future document types and modules that reproduce, subset, and extend HTML,
reformulated in XML. XHTML Family document types are all XML-based, and
ultimately are designed to work in conjunction with XML-based user agents. XHTML
is the successor of HTML, and a series of specifications has been developed for
XHTML. But … what is XML?

4.2. XML

4.2.1. Introduction

• Metadata

Giovinazzo states, “The universal delivery of information, both within the corporation
as well as to its partners, requires system and device independence. The need,
therefore is to devise a common language for the communication of data while
maintaining the structure and context of that data. The solution is a metalanguage, a
language whose primary function is to express the metadata surrounding data. (…)
Metadata is data about data. It defines for us the structure, format and characteristics
of the data. Typically, metalanguages are referred to as mark-up languages, but (…)
the mark-up aspects of a metalanguage are just one of the main characteristics”220.

Metadata is used to give a meaning to the data, transforming it into information. This
is the main difference of XML if compared to HTML. HTML contains simply the data,
together with formatting instructions. XML allows the metadata to be sent together
with the data, giving a meaning to the information transmitted via the network221. The
information can then be interpreted by automatic processes, stored in databases,
displayed and sent to other recipients. The requirement for all the processes is the
ability to recognize the XML format and convert the information into other formats222
used to store and display information. This allows the information to easily flow
across a peer-to-peer network of companies and individuals223, independently of the
types of software involved in the communication and data processing.

• Fiat Lux

The World-Wide-Web consortium (W3C)224 began discussions in 1996 to define a
mark-up language with the power and extensibility of SGML but the simplicity of
HTML. In February 1998 the version 1.0 of the XML specification has been approved.

220 In bibliography 13
221 Since identifying the data gives you some sense of what means (how to interpret it, what you
should do with it), XML is sometimes described as a mechanism for specifying the semantics
(meaning) of the data.
222 As discussed in the section 4.1on page 80.
223 This will be discussed in the section 5 on page 90
224 See Appendix B (Standards Organizations) on page 128.

Open Technologies for An Open World Jean Binder

 84

One of the first real-world applications was Microsoft CDF (Channel Definition
Format).225

• Objectives

The objectives of XML recognize SGML’s complexity and structure as well as
HTML’s simplicity and lack of structure. XML is not a replacement for HTML or SGML
but a complement to them. The three basic XML objectives are:

! Extensibility - the tags are not fixed and controlled by the standard organizations

like HTML, but defined by document authors, which allow the creation of
language extensions, shared by many nodes in a network.

! Structure - XML makes it possible to support structures like hierarchies and data

associations, and to divide a document into its components and parts.

! Validation - a valid document strictly complies with the mark-up and syntax of a

particular network environment.226

• Usages

XML can be used in different ways:

! Traditional data processing – XML encodes the data for a program to process.

! Document-driven programming – XML documents are containers that build

interfaces and applications from existing components.

! Archiving – The foundation for document-driven programming, where the

customized version of a component is saved (archived) so it can be used later

! Binding – The DTD or schema that defines an XML data structure is used to

automatically generate a significant portion of the application that will eventually
process that data

4.2.2. Technical Strengths227

! Format Independence – Changes to display do not depend on changing the data.

A separate style sheet specifies the display format.

! Portability – because the display is “extracted” from the data, this becomes

portable. Therefore, the code is often shorter and interoperable.

! Searching – searching the data is both easy and efficient. Search engines can

simply parse the tags rather than the raw data, becoming “intelligent”.

225 Source: Bibliography 29, page 4
226 Source: Bibliography 13, chapter 9
227 Source: Bibliography 29, page 6

Open Technologies for An Open World Jean Binder

 85

! Collaboration – In conjunction with Internet applications, XML’s associated linking
facilities make possible for many persons to work in the same document.

! Repository – XML is the emerging standard for repositories, which are becoming

the primary means for storing and relating software system components.

! Relationships – XML allows the exchange of communication containing complex

relationships like trees and inheritance.

! Self-describing code – this is a self-describing item.

4.2.3. Openness

XML complement the technologies discussed previously in this document. It is a
open standard by excellence, and can be associated with Open Source programs,
operating systems and internet technologies to obtain a maximum openness and
independence.

! Plain Text – Since XML is not a binary format, the files can be created or edited

with standard text editors or visual development environments. That makes it
easy to debug programs, and makes it useful for storing small amounts of data. At
the other end of the spectrum, an XML front end to a database makes it possible
to efficiently store large amounts of XML data as well. Therefore, XML provides
scalability for anything from small configuration files to a company-wide data
repository228.

! Wide open standard – In a similar way than Open Source – where both the

executable and source codes are available, allowing any programmer to
understand the detailed processes and information exchange between the
programs – XML opens the access to the different layers of information: Data,
description and display format. By certifying that all the information is stored and
exchanged in XML format, it is guaranteed that it will always be accessible,
independently of the supplier of the software used for its processing.

! XML and Open Source – If Open Source programs are used to process the

information stored in XML, the complete open environment is available, and a
complete independence of the supplier may be guaranteed. Future changes in
the direction of technology may imply in some programs or formats to become
obsolete. In this case, the information, its formats and all the processing
algorithms may be easily understood and rewritten.

! Security and Privacy – When the description is available together with the data,

the reasons to hold some kinds of information may be understood. When XML is
associated with Open Source, the lack of privacy – by sending secret information
to hidden recipients – may be discovered. Companies and governmental
agencies may be certified of the information to be exchanged with the network.
This does not happen with the usage of proprietary – and close – code and

228 Source: Bibliography 84

Open Technologies for An Open World Jean Binder

 86

formats, as many cases of privacy and security breaches have been found
recently.

4.2.4. XML components

XML allows the design of new, custom-built languages. Before a draft of the new
XML language appears, designers must agree on three things: which tags will be
allowed, how tagged elements may nest within one another and how they should be
processed. The first two – the language's vocabulary and structure – are typically
codified in a Document Type Definition, or DTD. The XML standard does not compel
language designers to use DTDs, but most new languages will probably have them,
because they make it much easier for programmers to write software that
understands the mark-up and does intelligent things with it. Programmers will also
need a set of guidelines that describe, in human language, what all the tags mean.

Schemas, like DTDs, define the structure and semantics of an XML document, but in
a more verbose way, using XML to define the rules and allowing for a richer set of
data types to do so.

Publishers – who would often like to "write once and publish everywhere" – may
extract the substance of a publication and then show it in different forms, both printed
and electronic. XML allows this to happen by tagging content to describe its meaning,
independent of the display medium. Publishers can then apply rules organized into
"stylesheets" to reformat the work automatically for various devices. The standard for
XML stylesheets is called the Extensible Stylesheet Language, or XSL.

4.2.5. Industry Applications

XML is being put across industry platforms. Groups of interest create working tasks
to identify the information types used in specific domains, to document the data
structures and to codify a DTD, creating a new language. The wide-range of
applications that are exploiting the XML standard provide some indication of the
widespread interest in the language. For example:

! cXML (Commerce XML) – Developed in conjunction with more than 40

companies, it is a set of lightweight XML DTDs, based on XML, with their
associate request/response process.

! OTP (Open Trading Protocol) – It provides an interoperable framework for

Internet commerce. It is able to handle cases where the shopping site, the
payment handler, the delivery handler and the support provider are performed by
different parties or by one party.

! XML/EDI – The integration for XML and EDI229 (Electronic Data Interchange) is a

logical step for electronic commerce. XML/EDI provides a standard format to
describe different types of data (e.g. a loan application, an invoice, an healthcare

229 EDI works by providing a collection of standard message format and element dictionary in a simple
way for businesses to exchange data via any electronic messaging service.

Open Technologies for An Open World Jean Binder

 87

claim) so that the information can be decoded, manipulated and displayed
consistently and correctly.

! MathML (Mathematical Mark-up Language) – A XML application for describing

mathematical notations and capturing both their structure and content. Its goal is
to enable mathematics to be served, received and processed on the Web.

4.3. Trends

The expanding development of Frameworks is probably going to expand to all main
commercial and academic areas. As an example, according to Bosak and Bray230,
“From the outset, part of the XML project has been to create a sister standard for
metadata. The Resource Description Framework (RDF), finished on February 2003,
should do for Web data what catalogue cards do for library books. Deployed across
the Web, RDF metadata will make retrieval far faster and more accurate than it is
now. Because the Web has no librarians and every Webmaster wants, above all
else, to be found, we expect that RDF will achieve a typically astonishing Internet
growth rate once its power becomes apparent.” 231

It is virtually possible to reorganize any existing structure, from the web or the
technical infrastructure, by using XML. One example is the development of a
standard for XML-based hypertext, named XLink and due later this year from the
W3C. It will allow the user to choose from a list of multiple destinations. Other kinds
of hyperlinks will insert text or images ad hoc, instead of forcing you to leave the
page. Bosak and Bray argue “XLink will enable authors to use indirect links that point
to entries in some central database rather than to the linked pages themselves.
When a page's address changes, the author will be able to update all the links that
point to it by editing just one database record. This should help eliminate the familiar
‘404 File Not Found’ error that signals a broken hyperlink.” 232

To conclude by quoting again Bosak and Bray, “The combination of more efficient
processing, more accurate searching and more flexible linking will revolutionize the
structure of the Web and make possible completely new ways of accessing
information. Users will find this new Web faster, more powerful and more useful than
the Web of today. (…) Web site designers, on the other hand, will find it more
demanding. Battalions of programmers will be needed to exploit new XML languages
to their fullest. And although the day of the self-trained Web hacker is not yet over,
the species is endangered. Tomorrow's Web designers will need to be versed not
just in the production of words and graphics but also in the construction of
multilayered, interdependent systems of DTDs, data trees, hyperlink structures,
metadata and stylesheets--a more robust infrastructure for the Web's second
generation.” 233

230 Jon Bosak and Tim Bray played crucial roles in the development of XML. Bosak, an on-line
information technology architect at Sun Microsystems in Mountain View, California, organized and led
the World Wide Web Consortium working group that created XML. He is currently chair of the W3C
XML Coordination Group and a representative to the Organization for the Advancement of Structured
Information Standards. Bray is co-editor of the XML 1.0 specification and the related Namespaces in
XML and serves as co-chair of the W3C XML Syntax Working Group.
231 Source: Bibliography 96
232 Source: Bibliography 96
233 Source: Bibliography 96

Open Technologies for An Open World Jean Binder

 88

Of course the peer-to-peer networks, the collaborative works and the powerful
aggregation of hackers may find innovative ways of learning and may adapt
themselves to this new way of constructing the Internet. Possibly, as we are going to
discuss in the next chapter, the hackers are better equipped than the institutions to
adapt easier and quicker to new demanding technologies. The key word is
motivation.

Open Technologies for An Open World Jean Binder

 89

Part II – Brave Open World
“I don’t know the future. I Didn’t come here to tell you how this is going to end. I came here to tell you

how it’s going to begin” Neo in The Matrix

Open Technologies for An Open World Jean Binder

 90

5. The Network Society

5.1. Networks

"It is not proper to think of networks as connecting computers. Rather, they connect people using
computers to mediate. The great success of the Internet is not technical, but in human impact.

Electronic mail may not be a wonderful advance in Computer Science, but it is a whole new way for
people to communicate. The continued growth of the Internet is a technical challenge to all of us, but

we must never loose sight of where we came from, the great change we have worked on the larger
computer community, and the great potential we have for future change." – David Clark

Licklider, as David Clark, was among the first to notice the social importance of
networks, and to envision the future paradigm of a global network. It is important that
the technology evolved as we analysed in the previous chapter, providing the
infrastructure that allowed this network to be possible. However, the computers,
network devices and protocols were simply the media to get the communication
performed. Similar to the psychophysical definition of the sound, as a wave
transmission that is perceived by the ear, the information available in the network
only becomes interesting when it’s consulted by a user. The users of a network are
the elements that count, as stated by Metcalfe: “The community value of a network
grows as the square of the number of its users increase”234. The mission of people
like Metcalfe was to be like the first architects that built cities and planned squares,
working to give the material conditions for the people to meet and communicate.

We saw that the first networking concepts were built around the definition of common
protocols, open standards and the open systems. After the networks were
established, they have been used to improve the communication among the
researchers, and revealed to be the best way to exchange information, discuss
ideas, have agreements, publish them, and restart the cycle. This created a positive
spiral, which elevated the performance of the network235:

! With an increasing consistency, due to the high sharing of knowledge between

the users, aimed to increase the efficiency and usage of the network.

! With a high connectedness, due to the increasing efficiency and usage of the

network, and to its reduced cost and complexity.

We may also note two external factors with participated in the factors above:

! The incentive of the governments – and most specifically the military

organizations during the cold war – that funded the infrastructure and
sponsored the academic institutions. This allowed the research to produce the
knowledge and be connected to the network.

234 Source: Metcalfe’s law. Metcalfe being the creator of the Ethernet - one of the basic technical
elements of the Internet infrastructure – his original sentence was possibly something like “the power
of the network increases exponentially by the number of computers connected to it”.
235 Measured according to Castells’ criteria, defined on bibliography 1, page 187. This is tightly related
to the second part of Metcalf’s sentence: “Therefore, every computer added to the network both uses
it as a resource while adding resources in a spiral of increasing value and choice”.

Open Technologies for An Open World Jean Binder

 91

! The increasing performance of the microchips at a given price, as specified in

the Moore’s law236, which implied in reducing costs of computer power and
hardware components, allowing more users to be connected to the network.

Figure 24 – Network power spiral and external factors

5.2. The Network Enterprise

5.2.1. From merchant networks

Initially, the networks were used by high-tech companies – like ATT’s Bell labs, Rand
Corporation, BBN (Bolt, Beranek & Newman), IBM – to exchange information with the
scientific community, and to progressively build stronger infrastructure devices,
protocols and software. IBM still uses its revolutionary proprietary protocols and
standards to promote a cohesive work among the different R&D centres all over the
world, smoothly integrate them with the other departments and – by the usage of
standard interfaces, TCP/IP and OSI-compliant protocols – with the academic
institutions. IBM understood it should increase its sources from all forms of
knowledge, to remain an innovative firm. Innovation was critical and companies like
Sun and 3COM have flourished in this environment. The computer scientists
participating of this networked environment alternated or cumulated jobs in the
industry and in the academic institutions. This created a networked milieu of
innovation whose dynamics and goals became largely autonomous from the specific
initial purposes237.

236 An accepted “law” in the electronics industry. See the original article in bibliography 57.
237 Source: Bibliography 1

NETWORK

POWER
CONSISTENCY CONNECTEDNESS

GOVERNMENTS MOORE’s LAW

Open Technologies for An Open World Jean Binder

 92

5.2.2. To the merchantable network

Later all the enterprises started to be connected, via the network, with suppliers,
customers, service providers and research laboratories over the world, in a
multicultural framework, forming network enterprises, and founding the global
economy. Thus, the information economy emerged in a planetary level, in different
cultural/national contexts, evolving around a common matrix of organisational form in
the processes of production, consumption, and distribution238.

Castells identified an important shift from vertical bureaucracies (the hierarchical
oligopolies from the industrial era) to the horizontal corporation (the networked
companies that survived and thrived in the informational economy), “dynamic and
strategically planned network of self-programmed, self-directed units based on
decentralization, participation, and coordination. (…) The manner in which a
company shares information and systems is a critical element in the strength of its
relationships” 239.

The networks formed by the horizontal corporations are divided, according to
Ernst240, into intra-firm (link different divisions and business functions from the
company) and inter-firm (normally relying suppliers, producers or customers).
However, the scope of our study is to identify two other important inter-firm
connections, also identified by Ernst:

! Standards coalitions - initiated by potential global standard setters with the

explicit purpose of locking-in as many firms as possible into their proprietary
product, architectural, or interface standards. This is the case of Wintel
(Microsoft and Intel association explained on the chapter 2.2.4) and .Net
(discussed on chapter 3.2.2).

! Technology cooperation networks – built to facilitate the exchange and joint

development of product design and production technology, involving cross
licensing and patent swapping, and permit the sharing of R&D. Under such
arrangements, knowledge typically flows in both directions and all participants
need to master a broad array of technological capabilities. The mainframe
architecture (explained on the chapters 2.1.1 and 2.2.1), MDA (discussed on
chapter 3.1.1) and Java (discussed on chapter 3.2.1) illustrate this.

5.3. Peer-to-peer and collective conscience
“Some people use virtual communities as a form of psychotherapy. Others spend many hours per day

pretending they are someone else, living a life that does not exist outside a computer. ”
 - Manuel Castells

In parallel with the formation of the network enterprises, academic people started to
use the network to build strong communities of interest, which started by exchanging
ideas and finally discovered a potential to defy and compete big monopolies. New
companies were created to exploit the new technologic developments in ways
unanticipated by the scientists and big companies - it was the case of Apple,
Microsoft and Intel – reducing the entry price to be part of the network. The benefits

238 Source: Bibliography 1
239 in Bibliography 1, pages 176, 178 and 210.
240 See bibliography 60, chapter 4.3

Open Technologies for An Open World Jean Binder

 93

of being in the network grew exponentially, because of the greater number of
connections. This gave birth to the modern counterculture movements like the
hackers and the crackers; it helped to break geographic barriers in the consolidation
of currents of thoughts, like anti-globalisation; it helped the formation of
worldwide/underworld organizations like the (cyber) terrorism.

5.3.1. Online communities

One of the start points of the online subculture was the set of science networks (like
ARPANET, CSNET, BITNET) being used to exchange personal messages around
subjects like science fiction, but the advent of personal computing and cheap
networking equipment gave birth to the BBS (Bulletin Board Systems). Described by
Rheingold as “a grassroots element to the Net that was not, until very recently,
involved with all the high-tech, top-secret doings that led to ARPANET (…). Real
grassroots, the kind that grow in the ground, are a self-similar branching structure, a
network of networks. Each grass seed grows a branching set of roots, and then many
more smaller roots grow off those; the roots of each grass plant interconnect
physically with the roots of adjacent plants, as any gardener who has tried to uproot a
lawn has learned.”241. Rheingold – who was an active member from an online
community called WELL242 and specializes today in the creation of new
communities243 - uses the term virtual communities to define the social phenomenon
spawned from the BBS. Virtual communities are social aggregations that emerge
from the Net when enough people carry on those public discussions long enough,
with sufficient human feeling, to form webs of personal relationships in cyberspace.

He identified that the technology that makes virtual communities possible has the
potential to bring enormous power - intellectual, social, commercial and political - to
the citizens, but this latent technical power must be used intelligently and deliberately
by an informed population. He considered the online subculture to be “like an
ecosystem of subcultures, some frivolous, others serious.”244 Some of the serious
communities united programmers, who used the network to exchange information
and programs – mostly related to the network itself – aiming recognition from their
peers.

The hackers were already used to the time-sharing systems networks as a
communication medium. With the networks, it was easier to exchange programs and
routines, and the university walls were not barriers as before. The community would
then span to other academic centres, and to other countries. Due to fate, or to the
anarchic tendencies of academic ecosystems, the networks started to be organized
in a horizontal manner.

241 in bibliography 20
242 http://www.well.com/. Rheingold also connected to other communities like TWICS, CalvaCom and
Usenet (http://www2.webmagic.com/usenet.org/)
243 See http://www.highermind.org/rheingold/Associates/
244 in bibliography 20

Open Technologies for An Open World Jean Binder

 94

5.3.2. Peer networks and cooperative computing

Initially, the term peer-to-peer (P2P, or simply peer245) described a protocol,
application, or network where every node had equivalent capabilities and privileges,
being able to initiate or complete any supported transaction. Beyond the technical
definition, the term started to designate decentralized virtual communities where
every individual participated in the same level, obtaining information with the same
access rights, and sharing this and new material with other network members.
Bauwens246 abstracts the peer-to-peer concept to other levels, like politics and
spirituality, and even suggests the hypothesis of a new civilization format based in
P2P247.

Bar and Borrus suggested that based on the two elements already discussed -
ubiquitous computing and a coherent infrastructure - a new computing paradigm
emerged in the 1990s, shifting from simple linkage of computers to "cooperative"
computing248. Mimicking the cooperation between different companies, and based on
peer-to-peer anarchic structure of organization, the hackers started to organize
themselves, initially simply letting spontaneous and informal communication flourish
at the same time, generating reciprocity and support by the dynamics of sustained
interaction.

5.3.3. May the force be with the hackers

The world-wide web was built on the contribution of the hacker’s culture of the 1970s.
The group of researchers at CERN led by Tim Berners-Lee and Robert Cailliau relied
on the hypertext concept created by Ted Nelson in the 1970s249, used hacker
technology like UNIX and TCP/IP and distributed their software free over the Internet.
Richard Stallman and Linus Torvalds gave the initial impulse to the new-hackerism
movement, by creating GNU and Linux. As important as GNU and Linux
technological features, are their sociological ones. They are in the core of the modern
hackerdom activities. They started the projects alone, and once their concept was
stable enough to be understood by other people, they used the Internet as the
communication media to form P2P task forces, by opposition to having a project
team - sponsored by governments or companies – working in the same space. They
had a centralization role, needed to guarantee the integration among the different
software parts, but the community was still in the power.

According to Eric Raymond, “Linux is subversive. (…) I believed that the most
important software (…) needed to be built like cathedrals, carefully crafted by

245 A good definition may be found in http://www.wikipedia.org/wiki/Peer_to_peer
246 http://users.skynet.be/michel.bauwens/index-2.html
247 For more information, read the interesting paper in bibliography 31
248 See the interesting paper in bibliography 62.
249 In Dream Machines, Nelson provides three categories of hypertext: The first, basic or chunk
hypertext, supports what we have been calling reference and note links. The second, stretchtext, is a
full implementation of expansion links. The third, collateral, stems from his work in 1971 with the
Parallel Textface, which provides a view of two documents on one screen, with full support for
versioning. Nelson also distinguishes between "fresh" or original hyperbooks on one topic,
"anthological" hyperbooks linking different works, and "grand" systems. Source: bibliography 63.

Open Technologies for An Open World Jean Binder

 95

individual wizards or small bands of mages working in splendid isolation. (…) Linus
Torvalds' style of development — release early and often, delegate everything you
can, be open to the point of promiscuity — came as a surprise. No quiet, reverent
cathedral-building here — rather, the Linux community seemed to resemble a great
babbling bazaar of differing agendas and approaches (aptly symbolized by the Linux
archive sites, who'd take submissions from anyone) out of which a coherent and
stable system could seemingly emerge only by a succession of miracles.”250

5.3.4. The motivated and ethical hacker

The most difficult, for people outside the hacker communities, is to understand what
are their motivations. According to Himanen251, the hacker ethic may be divided into
the work ethic, the money ethic and the network ethic. By the work ethic, he explains
that the hacker activity must be joyful, enthusiastic and passionate, while performed
in an individualistic rhythm of life.

The money ethic states that the main hacker objective shall be the recognition from
the peers, and through the “capitalism hackerism”, one can take part in the traditional
capitalism only temporarily (until have enough capital to dedicate exclusively to “have
pleasure”) or on a part-time basis (working for a traditional company during the day,
developing free software during the night). In addition, most of the hackers who
established companies to earn money from free software and open source don’t see
any problem in selling software or services, once the work ethic is followed.

The network ethic (or nethic) preaches that a hacker should always try to practice the
freedom of expression, respect privacy and stimulate self-activity – “the realization of
a person’s passion instead of encouraging a person to be just a passive receiver in
life (…) very different to the traditional media”252

“A hacker who lives according to the hacker ethic on all three of these levels gains
the community’s highest respect. This hacker becomes a true hero when she or he
manages to honour the final value (…): creativity - that is, the imaginative use of
one’s own abilities, the surprising continuous surpassing of oneself, and the giving to
the world of a genuinely valuable new contribution”253.

5.3.5. May the force be with the hackers

David Stutz, The man formerly responsible for Microsoft's anti-open source strategy,
attacked in February 2002 (just after his retirement) Microsoft's PC-based strategy,
which he argued as misguided in a computing world where complex networks are
more important than single devices. He maintained that the internet, the web and
open source software projects, in which communities of programmers contribute
improvements which are distributed free, are all part of the steady advance of
networked computing.

250 Raymond’s chef d’oeuvre, The Cathedral and the Bazaar is available online. See bibliography 6.
251 See bibliography 2
252 See bibliography 2, page 106.
253 See bibliography 2, page 141

Open Technologies for An Open World Jean Binder

 96

Stutz suggested that Microsoft needs to focus on building a layer of software that
integrates network technology. But that layer should not be an operating system like
Windows, which is tied to PC technology. "To continue to lead the pack, Microsoft
must innovate quickly," he said. "If the PC is all that the future holds, then growth
prospects are bleak."254

5.3.6. Lingua Franca

The hacker communication tools are the e-mail, newsgroups, chats and, later, the
weblogs. The contents are around new programs, tools, routines, problems, and
updates. The language was often English. It changed, after the spread of cheap web
access in other countries, and then voluntary translations for programs, web sites
and documentation flourished – again in exchange of recognition. This phenomenon
helped to expand the hackerdom borders, by creating hacking sub-networks
speaking regional languages, even if the common language among different local
communities was English. To some analysts, the exchange of information via written
medium could give an impulse to the recuperation of the constructed and rational
discourse. What finally happened, on the contrary, was the stimulation of a new form
of language, expressed by the electronic texts and richly completed by funny
symbols, weird acronyms and multimedia.

Another important factor is the asynchronous communication favoured by the e-mails
and newsgroups. This allowed each developer to work when convenient, with no time
obligations, exactly as preached by the hackers ethic.

5.4. Privacy

The need for privacy on the net started to attract the public opinion in 1999 during the
menace, from Intel, to create a processor identified by a unique number, known as
PSN (Processor Serial Number). Although this practice is current in mainframes –
software licenses are often validated by comparing an encrypted key with the
computer’s serial number – its implementation in the personal computers could be
the foundation of a vast tracking system that could help accumulate data on users as
they travel around the Web, violating their fundamental right to privacy. The outraged
privacy advocates launched a boycott of products containing the Intel Pentium III
chip, the first such broad-based boycott of a product over the privacy issue255. And
they won the battle. After a letter from the American government256, Intel finally
decided to disable the PSN feature257.

Another long-term battle is against the abusive usage of cookies258, to trace the
virtual footsteps of online users. The main advantage of cookies is the addition of a

254 Source: Bibliography 82
255 See http://www.bigbrotherinside.org/
256 Representative Edward Markey (D-Massachusetts), the ranking minority member of the House
Telecommunications, Trade, and Consumer Protection subcommittee.
257 See bibliography 66
258 According to Netscape, cookies are a general mechanism that servers can use to both store and
retrieve information on the client side of the connection.

Open Technologies for An Open World Jean Binder

 97

simple, persistent, client-side state, which significantly extends the capabilities of
Web-based client/server applications. Without this type of persistent applications, it is
virtually impossible to securely transfer the user information between two web pages,
functionality required by commercial web sites. Nevertheless, sometimes the
collection of information is excessive, with consumer habits being monitored by
marketing companies and stored into databases, later used in aggressive advertising
actions.

The original cookie definition, by Netscape, had several flaws, avoiding the user
acceptance of the cookie execution. The IETF prepared a new proposal, containing a
privacy section to enforce the need for this acceptance259. The newest releases from
Microsoft explorer implement part of those suggestions.

A famous case is the EPIC against DoubleClick. “EPIC (Electronic Privacy
Information Center)260 filed a complaint261 with the Federal Trade Commission on
February 10, 2000, concerning the information collection practices of DoubleClick
Inc., a leading Internet advertising firm, and its business partners. The complaint
alleges that DoubleClick is unlawfully tracking the online activities of Internet users
(through the placement of cookies) and combining surfing records with detailed
personal profiles contained in a national marketing database. EPIC's complaint
follows the merger of DoubleClick and Abacus Direct, the country's largest catalog
database firm. DoubleClick has announced its intention to combine anonymous
Internet profiles in the DoubleClick database with the personal information contained
in the Abacus database.”262

Important is to notice that all discussions about cookies, and the discovery of the
privacy issues, are due to the openness of the HTTP protocol, needed for the
interoperability between the HTML language and the browsers. If similar initiatives
were taken under proprietary environments, everything could remain secretly hidden
for a long time.

259 See bibliography 68.
260 http://www.epic.org/
261 Available on http://www.epic.org/privacy/internet/ftc/DCLK_complaint.pdf
262 in http://www.epic.org/privacy/internet/cookies/

Open Technologies for An Open World Jean Binder

 98

6. The New Economy

“The concept of profit has always been the noble version of a deeper, more fundamental human
instinct: greed” - Manuel Castells

A new economy – networked, global and informational – emerged in the last quarter
of the twentieth century on a worldwide scale. Its epicentre has been the information
technology industries and financial institutions in the 1990s. The first aspect of this
new economy – the network – has been discussed in the previous section. The
second aspect is the institutional, organizational, and technological capacity to work
as a unit in real time, or in chosen time, on a planetary scale, enabling the company
to survive and thrive in this global economy. This discussion is out of the scope of
this document. Let’s now consider the fundamental elements of the third aspect – the
informational economy – always from the open source and open standards point of
view.263

The quest for possible answers to three important questions will drive this chapter:

! What strategies have been used by the IT companies to dominate the

hardware and software market?

! What is the impact from the open platforms and standards on those

strategies?

! What are the chances for the Open Source community to increase the market

share?

To increase profits, when looking for short-term results, there are four main ways: to
reduce production costs (as seen in the last two years with the labour cost reduction -
mainly in the ICT market – and the falling price of electronic components), to
accelerate capital turnover, to broaden the market, and to increase productivity. This
last has been the main advantage of the open source products over the competition.
The productivity, when applying the hacker ethical principles264, is extremely higher
than in the other firms265. Its technology is proved to have higher quality and to be
more innovative. Productivity and technological innovation are important means, but
certainly not the only ones.

6.1. Standard wars

When a new technology standard appears, it may complement (and sometimes
merge) or compete with the existing ones. When UNIX become a standard for open
operating systems and started to dominate the market, IBM decided to create its own

263 The globalisation of the financial markets is considered the backbone of the global economy, and
together with the speed of market operations, it is possibly the main cause of the recession started in
2001.
264 Source: Bibliography 4
265 Source: Bibliography 1, page 95.

Open Technologies for An Open World Jean Binder

 99

version of UNIX, and let the mainframe platforms to be UNIX compliant. It reacted so
fast that the OpenEdition layer of the MVS operating system was one of the first to
comply with the POSIX standard. This was motivated by two interdependent factors:
The first was the risk of the established base of mainframe customers to migrate from
the old systems to the most attractive and flexible UNIX environments, which
appeared to be less expensive and to have more human knowledge resources
coming fresh from the universities. The second was the usage of UNIX-compliant
software under mainframe platforms. It revealed to be less expensive for IBM to
develop a UNIX layer than to redevelop a whole subset of software – mostly related
to the Internet, Web, User interfaces and Database technologies - to compete with
the UNIX versions. It proved to be the right decision – even if many customers
eventually migrated to open systems platforms – with many mainframe customers
using today the UNIX layer to run network and Internet services.

With Microsoft, it was the opposite. At first, in the desktop segment, when its
cooperation with IBM and Apple was terminated, it decided to profit of its own
installed MS-DOS base – a high-valued network – to implement a new graphic
environment. The quality revealed to be a less important element than the number of
users (see section Network externalities below), and quickly Microsoft became the
preferred operating system provider from the manufacturers of PC-compatible
machines – including IBM. In the server segment, Microsoft always thought of
mainframes and UNIX as legacy technologies, and started by dominating the low-
entry market share, by providing small servers fully compatible with the installed base
of desktop PCs. With the increased capacity of Intel-based machines, the Microsoft
servers started to perform functions for which a mainframe was needed before. And
Linux appeared to play in the same market share than Microsoft windows servers. As
the ideals of Microsoft and the Open Source community were completely different
(money, monopoly and marketing against gratuity, freedom and quality) the fusion or
cooperation was not possible.

6.2. Network externalities

As Metcalfe helped us to demonstrate in the section 5.1, the value of the network
increases with the number of its nodes. All new networks start with a zero value, and
the network externalities from the opponent networks make their spread more
difficult. When a new technology appears, incompatible with the existing ones
dominating the market, a huge effort must be made to create a large network, for its
value to be higher than the changing costs266. This concept is not new, and has been
implemented in the postal services, railways, airlines and telephones.267

Currently, in the operating systems market for desktops, the value of the network
composed by the windows users is extremely higher than the competition, as more
than 90% of the users are connected to it. This high value forces most of the
companies and individuals willing to use Macintosh or Linux desktops to keep at least
one PC compatible with the windows systems. It also motivates the creation of Linux
products that may interface with windows systems – by recognizing the Microsoft
proprietary formats, by being able to execute windows-compatible programs in a
simulated environment, by recognizing the Microsoft proprietary protocols in client-
server and network connections. This causes negative reactions from Microsoft,

266 See section 6.4, paragraph Changing costs on page 104.
267 See bibliography 7, chapter 8 for a more complete discussion. See also the bibliography 1.

Open Technologies for An Open World Jean Binder

 100

which keeps changing its standards and protocols to difficult the connections and
data exchange with other systems and products, aiming to keep the users locked into
its network, and forcing them to pay expensive costs to get out.

When a company has a complete monopoly in the operating systems or hardware
market share, it is extremely easy to trigger the network externalities in favour of its
own related products to destroy the competition. It was always the IBM strategy in
the mainframe market. A first example is the security layer, tightly related to the
operating system to improve the enforcement of the access authorization. IBM has its
own product – RACF, later renamed to Security Server – that comes imbedded in the
MVS installation material, even if not ordered. To install the products from IBM
competitors, one must follow a procedure to remove the IBM product. A second
example was in mainframe networking. A company called Interlink developed a
software product that implemented TCP/IP on IBM mainframes. The performance
was better, the price lower, and the flexibility higher, the door to the Internet was
finally open. IBM quickly offered its own TCP/IP stack “free” together with the
operating system, and started to build tight links between its own product and its
databases. After complaints from customers, IBM started to provide a refund for
companies that did not want IBM TCP/IP. As the impact was only felt by big
companies, the affair is almost forgotten. A similar case happened with Microsoft
against Netscape in the browser segment. This time, with a larger publicity and the
difference that Microsoft continues to freely distribute Internet Explorer, what
practically eliminated Netscape from the browser market268. The only solution found
by Netscape was to “escape” to the open source community, creating Mozilla, one of
the best browsers compatible with Linux269.

6.3. Feedback

The feedback is an important factor in the competition for market shares, already
existent in the industrial age, which attained a fundamental position in the information
economy. Due to the virtualisation of the networks explained in the section 5.1, the
feedback effect tends to create monopolies in each domain of the software and
information realms. The feedback may be classified, according to its impact for the
creation of monopolies, as positive or negative. Please note that the feedback impact
for the economy as a whole might be the opposite than its name would suggest.

268 Description of this case may be found on bibliography 18 (page 99).
269 Full story may be found on the bibliography 5 (page 197).

Open Technologies for An Open World Jean Binder

 101

6.3.1. Positive

The feedback is tightly related to the network externalities. In cases of positive
feedback, the quality of a product (or sometimes the success of a brand or its
marketing strategies) expands the network of users, which will in turn increase its
network value, motivating more users to integrate it. This may happen successively,
in a positive spiral, until the stability brought by the saturation level of the market
segment. The earlier the product starts its positive feedback, the more chances it has
to become a monopoly. However, as the technology evolves in cycles, products
dominating the market in one moment can be quickly dominated in the next evolution
step if they are unable to evolve as quickly as its opponents, or if they cannot react to
new products bringing superior features.

Figure 25 – Two cycles of positive feedback

To illustrate this, let us consider the Figure 1 above and the computers market from
the 1960s until the 1990s, discussed in the section 2.2.1. Initially there were several
computer suppliers, competitively sharing the market. Then IBM created the
System/360 architecture, with a superior technology, standards and aggressive
marketing campaigns. It quickly dominated the market, eliminating part of the
competition, and forcing the remaining to survive with a small market share. The
paradigm was the evolution of UNIX systems, which could provide a good an
inexpensive solution, as demanded by the potential customers. The market share of
the IBM machines - then known as mainframes - started to reduce, forcing IBM to
evolve an old platform – S/36, then transformed into AS/400 –, create its own UNIX-
compliant machines and systems – AIX – and create a UNIX compatibility layer in the
mainframe systems. The mainframe environments are targeted for death since then,
but elevated migration costs and unbeatable technical superiority are still keeping
them alive with a stable market share. IBM is trying to stimulate a new positive
feedback in favour of their mainframes – now called high-end servers – with a
strategy called server consolidation, which includes a compatibility with the Linux
operating system and the advantage of integrating the processing capacity of
multiple low entry servers into a single box.

Conception

Technological
Paradigm

Positive
Feedback
For
The
Competition

Saturation
Positive
Feedback
For
The
Product

Time

Market
Share

Open Technologies for An Open World Jean Binder

 102

6.3.2. Negative

Shapiro and Varian270 may describe this later reaction from IBM as a negative
feedback, when force motivates weakness (UNIX competition conquer market share
from IBM mainframes) and weakness motivates force (IBM redesign the mainframe
systems to be compatible with UNIX and Linux). If IBM succeeds in its movement,
the result may be the stabilization of the market, until the next paradigm, as shown in
the Figure 26 below:

Figure 26 – Negative feedback

Standards de facto often evolve in the marketplace favoured by positive feedback
cycles. As seen, they stimulate the monopolies in detriment to a healthy competition.
The absence of competition normally has negative impacts in the technology (by
reducing the pace of innovation), the social welfare (by increasing unemployment
rates with the elimination of the competitors) and the economy (by directing the flows
of profit into the dominating company).

6.3.3. The role of the standards

Standards de jure can promote the competition, by creating a negative feedback with
the publication of the standard protocols and definitions, the implementation of
several compatible products, and stimulating the innovation by the different
implementations of the standard recommendations. This is one of the reasons by
which the standards are increasingly limited to general specifications, leaving the
details for the companies and scientific community to decide. The other reason is to
reduce the time needed to develop a standard, allowing the negative feedback effect
to happen before one company decides to implement its own product, outside the
standard specifications, trying to quickly ignite a positive feedback in its favour. This

270 See bibliography 7, page 158.

Product A

Product B

Time

Market
Share

Open Technologies for An Open World Jean Binder

 103

is the preferred practice of companies like Microsoft, as defined by Bill Gates in his
book The road ahead: “Because de facto standards are supported by the
marketplace rather than by law, they are chosen for the right reasons” 271.

Microsoft is also accused of practicing “vapourware”272: to avoid the competitors to
conquer its market with products offering better quality, creating a technological
paradigm and originating a positive feedback, one company may announce a new
version of its product, containing the same facilities than the competition, even before
its design.

6.4. Cost Analysis

6.4.1. Production Costs

The most important part of the production cost for software development, is from
research and development (R&D). Other important costs are for marketing,
promotion and documentation.

Those costs are important even for the open source software, despite the wrong
impression that they are “free”. Studies based in the COCOMO model273 estimates
that “It would cost over $1 billion (…) to develop [the GNU] Linux distribution by
conventional proprietary means in the U.S.”274. Another study points out: “If Debian
[one of the Linux distributions] had been developed using traditional proprietary
methods, the COCOMO model estimates that its cost would be close to $1.9 billion
USD to develop Debian 2.2”275. IBM announced investments of $1 billion USD in
R&D for Linux, many other hardware and software suppliers – including HP, Intel,
Sun and SAP participate in Linux research laboratories.

6.4.2. Reproduction Costs

As for the other products from the digital information economy, the reproduction costs
are extremely low. They are normally the duplication of a CD-ROM, and may imply
the reproduction of documentation.

The reproduction costs of the open source software, if we consider the main Linux
distributions, are even higher than the proprietary software. Normally the Linux kernel
is supplied with many complementary software products, in several CDs, and a good
documentation for the installation and customisation procedures.

271 See bibliography 135, chapter 3.
272 See bibliography 135, page 98.
273 See the description of the method in the bibliography 73
274 For the complete study please refer to the bibliography 73
275 For the complete study please refer to the bibliography 74

Open Technologies for An Open World Jean Binder

 104

6.4.3. Distribution Costs

The open source software may be distributed in two ways: a free download from the
web (with indirect network costs for the distributors and users) or a CD containing the
operating system, tools, applications and an installation manual. In this second way,
it has the same costs than other proprietary products.

6.4.4. Transaction Costs

The transaction costs are measured by the cost for the customer and the distributor
per copy of the product.

Probably the main difference between Linux and the other operating systems, and
between open source software distributed under the GPL license and other
commercial software is the reduction of the transaction costs, for companies installing
them in several computers. Normally commercial software is licensed according to
the number of computers or users. The open source software is often distributed
without limits for its usage, copy or installation. This is extremely important for big
companies, and in moments of financial crisis, this might be a determinant factor for
the adoption of open source software. In parallel, the new licensing practiced by
Microsoft is helping to push customers out of the windows software, mainly from its
server family. This has been anticipated by Bill Gates in 1995: “Customers express to
me their worry that Microsoft, because it is, by definition, the only source for Microsoft
operating-system software, could raise prices and slow down or even stop its
innovation. Even if we did, we wouldn’t be able to sell our new versions. Existing
users would not upgrade and we wouldn’t get any new users. Our revenue would fall
and many more companies would compete to take our place.”276 This may reveal an
even more amazing approach: Microsoft may have increased its licenses to measure
the real interest by the companies in the open source software. If it starts loosing
market shares, its prices may be reduced again, to the previous level, in parallel with
a strong marketing campaign.

6.4.5. Changing costs

The changing costs are paid by the companies and individuals willing to adopt a new
technology, changing from an existing network of users to another. The total
changing costs are calculated by adding the investment in new hardware, software,
training and the maintenance of the compatibility with suppliers and customers. For
example, companies wishing to move from windows to Linux benefit from the first two
elements (Linux is compatible with all windows hardware with better performance,
and the license and maintenance fees from open source products are usually lower).
They may have expenses with training, higher for the people responsible for the
installation and support than for the end-users. These subjects will be detailed on the
next paragraph (TCO).

276 in bibliography 17, page 63.

Open Technologies for An Open World Jean Binder

 105

When analysing the implementation of a new technology inside a company or
intranet application, only the internal costs are considered. When the implementation
implies changes in external users, the collective changing costs must be taken into
account. An example can be taken from the traditional client-server applications,
when part of the application runs in the client side, another part on the server. If a
new release of the server component - requiring a new version of the operating
system - is to be installed, the changing costs are limited by the reduced number of
servers. If a new release of the client component needs a new version of the desktop
operating system, the cost is multiplied by the number of users. In case of
applications available outside the company – like clients for home banking
applications - the situation is even more complicated, because the customers need to
be convinced to upgrade their own operating systems. Internet applications helped to
eliminate this problem, with the usage of server applications exchanging information
with the clients by the usage of standard formats and protocols – like TCP/IP and
HTML. If a new version of the application is released, only the application servers are
impacted. The customer is even free to choose the more convenient operating
system.

This is also good a reason for the organisations controlling the Internet names (like
the URL) to remain non-profit. The collective changing costs of changing the URL of
a web site will imply the usage of publicity, electronic and paper communications,
change of cross-links with other web pages, and may often imply the loss of
customers coming from old links. If a single – and commercial – institution keeps the
control of the URLs, the risk of abusive prices and practices is extremely high.
High changing costs are normally considered as a lock-in situation. Shapiro and
Varian identified seven types of lock-in situations, frequent in the information
economy277: Contract obligations, Durable goods, Specific training, Information and
data bases, Specialized suppliers, Research costs, Fidelity programs. Important for
our study are:

! Durable goods – The usage of open platforms may reduce the risk of the

technological lock-ins (if the equipment is changed, the software and applications
must follow). The standards are often implemented by several hardware and
software companies, allowing the replacement of determined products with lower
changing costs than proprietary alternatives. Commercial lock-ins (when the
compatibility only exists between complementary products from the same supplier
or from a close network of “authorized vendors”) may be eliminated with the
usage of open standards. The implementation of open source solution may also
eliminate the need for the implementation of new hardware, as discussed below.

! Information and data bases – The usage of strictly open formats – like HTML and

XML – may ensure the compatibility with many software components, and
eliminate the need for conversion tools when the application is replaced. When
proprietary databases are implemented – like Oracle and DB2 – the existence of
tools to convert the information into open formats must be verified, and the work
needed for the data extraction, conversion and insertion into the new database
might be taken into account.

! Specialized suppliers – Open solutions are normally supported by many different

companies, which have free access to the standards, protocols, documentation

277 Translated and adapted from bibliography 7, page 109.

Open Technologies for An Open World Jean Binder

 106

and sometimes even the source code. This is essential to ensure good problem
solving techniques and a total independence from the services provided by the
supplier.

The lock-in situation has also an impact in the suppliers, which are forced to adapt to
new strategies from preferred customers or partners. This has been the case recently
for software companies developing applications using DOS interfaces, when
Microsoft decided to disable a subset of DOS functionalities in the Windows XP
family.

Unification strategies like the single UNIX specification discussed on chapter 2.2.2,
and the ongoing United Linux initiative (chapter 2.2.3) aim to reduce the lock-ins
provoked by different (and incompatible) implementations, and to minimize the
impact for the application suppliers when new versions of the operating systems are
released. They also reduce the cost for application and hardware suppliers, which
have a single version to test and validate their products.

The implementation of the Internet, based on open standards and protocols, is
considered to be a turnkey for its development, with the consequent perfect
communication among different hardware and software suppliers, and the absence of
lock-in situations.

6.4.6. TCO

A difficult task when comparing alternatives – in our case proprietary against open
source – is the need to estimate all the costs involved in the implementation
(changing costs) and the recurring periodic costs. This is called “Total Cost of
Ownership”278. Elements like operating system licenses and hardware equipment are
obviously included, but salary, consultancy services, training and the licenses for
complementary – although mandatory – software should be obtained in advance.
The scope of this document does not allow an extensive study of all costs implied in
the installation and maintenance of servers and desktops; several comparisons have
already been made279 and a brief analysis may be summarized by some of the TCO
items:

! Hardware – Solutions built around environments like Linux and Windows can use

the same hardware equipment, and even if the performance obtained by Linux is
commonly accepted to be better, this can be ignored for a fair TCO
comparison280. The comparison with proprietary hardware solutions, like Sun,
Apple, IBM mainframes and AS400 generally gives a higher difference, in favour

278 TCO (total cost of ownership) is a type of calculation designed to help consumers and enterprise
managers assess both direct and indirect costs and benefits related to the purchase of any IT
component. TCO analysis originated with the Gartner Group several years ago and has since been
developed in a number of different methodologies and software tools. Source:
search390.techtarget.com
279 Good comparisons may be found in bibliographies 75, 76 and 77. Another good collection on
articles on Linux vs. Windows TCO may be found on
http://searchwin2000.techtarget.com/featuredTopic/0,290042,sid1_gci845125,00.html
280 NB – The argument here is: what we cannot clearly measure, we shall not use as a comparison
factor.

Open Technologies for An Open World Jean Binder

 107

of the open source alternatives281. Hardware maintenance fees, insurance and
floor space may also be considered to obtain a more complete analysis.

! Software – The Open Source solutions are always cheaper than proprietary ones,

for small-to-medium environments. Generally, the license costs for large
environments should consider the usage of proprietary databases and
applications282, which are generally less expensive – or with an equivalent price -
when installed under open source environments. An important factor to consider
is the need to pay yearly fees – known as maintenance and support – to have the
right to use the software.

! Human resources – It is extremely difficult to estimate the manageability – or the

simplicity of installation, configuration, support and usage - for each solution.
Commonly accepted arguments for solutions based on Windows are the easy
installation (it is normally pre-built into new hardware) and cloning – duplication of
servers and desktops -, absence of structured problem-solving analysis, and
consequently the need for more support and help-desk people, and operations
like “system restarts” and recovery of lost information. For Linux and other UNIX
systems, the existence of well-trained (and more expensive) people, the time-
consuming tasks to install and configure the environment, with later facility to
maintain it. IBM mainframe environments are far more difficult to install and
configure, often requiring specialized consulting services, but easier to maintain
after the stability level is attained. Smaller systems tend to require more servers to
give the same capacity of large systems, and consequently need more people to
support them283.

! Training – The clear advantage is for well-known products like Windows, which

are still largely used in schools and at home. The Linux interfaces – like KDE284 -
and office suites – like OpenOffice285 and StarOffice286 - are quickly reducing this
advantage287. For the support staff, the time needed to learn how to maintain an
open or proprietary environment is not different. Exception made for full
proprietary environments, like IBM mainframes and AS400, where the complexity
is higher, and so is the time for the technical staff to be fully productive. For any
solution, the ideal situation is often to have experimented consultants to help in
the initial steps and to complement self-study and classes with ad-hoc training.

! Services – Related to the training costs, the consultancy services needed to help

in the implementation of any solution are more dependent on the complexity of
the environment than the openness of the source or platform. There are always
differences in the price for consultancy for each platform, but due to the volatility

281 NB – The decision upon the implementation of a full proprietary solution (hardware tied to the
software) normally consider other factors than cost.
282 Some examples: DB2, Oracle, SAP, SAS.
283 NB – New technologies that help to establish a single and central point of control for several
servers, and to easily clone environments are changing this scenario.
284 http://www.kde.org/
285 http://www.openoffice.org/
286 http://wwws.sun.com/software/star/staroffice/6.0/
287 NB - Even if open source suites are able to read the simple documents, some features – like
imaging, indexation, forms - can be nastily converted. This is normally attributed to the lack of
portability of Microsoft formats, which also make impossible to guarantee their perfect visualization in
the different printer and screens. However, it was always the case of Microsoft products, and this is
not due to change.

Open Technologies for An Open World Jean Binder

 108

and dependence of cultural differences, this should be analysed in the moment
and country of the implementation.

6.4.7. Cost comparison

The overall conclusion - based on the previous paragraphs and on the bibliography
referred by them - is composed by the following points:

! For each item described above, the initial costs, the changing costs and the

recurring costs should be identified.

! Considering the installation of new hardware and software, in a company or

educational establishment without previous knowledge of any solution – open or
proprietary – the TCO for implementing proprietary software is more elevated than
any open source solution, with the difference being directly proportional to the
size of the computing environment.

! As most of the companies already have an installed base of computers, the

changing costs might be more important the other elements, and must be
analysed carefully. Conversions from proprietary environments like mainframes
may have a large cost for the redeployment of the applications and the tasks
needed to redevelop the interfaces with other platforms. Migrations from
Windows-based environments to open systems shall have a higher transition cost
for the desktops than for the servers – due to the reduced impact on end users -,
so the size of the network is an important factor to consider.

! To compensate the changing costs, the recurring costs after the initial

investments are generally lower for open environments, thus when considering
the cost impact for a period like 3 to 5 years after the implementation of the new
system can give different results than comparisons taking into account only the
implementation costs.

! All environments must be continually upgraded to keep current operating system

versions and to profit from technological evolutions, like improved security,
increased processing capacity, reduced machine size. The cost for upgrading
mainframe environments is known to be high in terms of human resources – but
decreasing – and normally oblige hardware changes each 10 years288. Windows-
based systems, while having usually minor technological advances, imply
hardware changes – or upgrades of memory and processor resources – each 2,5
years. In the open systems, the capacity is directly related to the amount of
service needed and not to the version of the operating system. An average time
between hardware upgrades is estimated to 5 years, to benefit from the
technological advances.

! When the changing costs are higher than the cost savings, and the technological

benefits are not compensated by attaining important business objectives, there is
a lock-in situation. The decision is complicated because of the recurrence of the
consequences: The lock-in increases with the time, due to the increasing usage
of the technology – by new people, in new functions and by new applications -

288 See paragraph Architecture on page 21.

Open Technologies for An Open World Jean Binder

 109

and consequent higher changing costs. This is one of the best arguments in
favour of the open standards: freedom of choice. Once the migration is done, the
changing costs may be amortized in the long term, and the company is free from
lock-ins. If the supplier increases the price, does not follow the evolution pace or
does not give a good support, the changing costs for a new alternative are lower:
the open formats and standards are compatible with several products from the
competition and consequently the migration tasks and training become easier.
This is an example of good recursion: as the supplier is aware of the facility to
change, it is more motivated to ask for a correct price and continuously invest in
innovation. Both supplier and customer benefit from this process.

 New

Installation
Changing
Costs

Recurring
Costs

Upgrade
Costs

Lock-in
risks

Freedom
of choice

Open # $ # # # $
Proprietary $ # $ $ $ #
Table 3 - Cost comparison summary

6.4.8. ROI - The conclusion is beyond the costs

Despite the obvious reduction of software costs and considering the high changing
costs and the nightmare of calculating a real TCO, the Open Source community tries
to concentrate their marketing efforts in comparing open source against proprietary
software (and the example is often Windows x Linux) by measuring factors like
manageability, control, stability, scalability and freedom of choice. This may be
represented in a business case by estimating the amount for the Return on
Investment289. Besides the cost savings obtained, which in our hypothesis is already
part of the TCO, all the other elements benefit the open source software, and the
analysis should concentrate in the importance of the benefit for the business
objectives.

As an example of the indirect benefits, let us consider the opinion from Bruce Perens:
“Control means being able to get a different service provider if you don't like the
service you're getting on your software. Control means not having to convince the
software's producer that your needs fit in their marketing plan. Control means not
living in fear that the BSA (Business Software Alliance) will bring federal marshals to
raid your business. Control means not having a domineering software company”290.
More benefits can be exploited with the help from the explanations and comparisons
made on chapter 2.

A careful functional analysis should always precede the cost analysis, to verify if the
open source alternatives can be implemented. A good example is for graphic
environments. Currently there are no good solutions to compete with proprietary
software – which largely uses proprietary formats - like Macromedia Flash®291, 3D

289 For a given use of money in an enterprise, the ROI (return on investment) is how much "return,"
usually profit, cost saving, or indirect benefits that help to satisfy business needs. See
http://www.rms.net/lc_faq_other_roi.htm
290 in bibliography 72.
291 http://www.macromedia.com/software/flash/

Open Technologies for An Open World Jean Binder

 110

Studio Max™292 and Adobe Photoshop®293, which only run under proprietary
platforms (Mac or Windows).

Despite the high importance given by consulting reports to the ROI evaluation, a
research conducted by DataNews showed that only 30% of the Belgian companies
measure the ROI to verify the economical benefits of technological projects.294

292 http://www.discreet.com/products/3dsmax/
293 http://www.adobe.com/products/photoshop/
294 Source : DataNews n°02, 17/01/2003, Page 4

Open Technologies for An Open World Jean Binder

 111

6.4.9. Case studies – cost reduction

The Linux strategy is a major part of Unilever's drive to cut its IT bill, a part of an
organisation-wide plan that already reduced the IT budget from €600m (£398m) in
2000 to €500m (£332m) in 2003, and aims further reduction of €100m until 2006. The
main savings will come from hardware, which currently accounts for 40 per cent of
the company's infrastructure costs. The Linux strategy will contribute through server
consolidation and by reducing unit costs.295

Implementation of Linux is also behind cost saving for Morgan Stanley. The numbers
have not been announced but the company said that the goal of the project,
underway since mid-2001, is to reduce the cost of computing by adding flexibility to
its computing architecture. Morgan Stanley's institutional securities division has opted
for new architecture that moves the company's data, applications and operating
systems off specific machines and onto network servers throughout its global
computing infrastructure.

This infrastructure is made up of around 6,000 servers, 25,000 desktop computers
and thousands of applications. The aim is also to increase flexibility : "We want to be
able to run any application on any box at any time," said Jeffrey Birnbaum, managing
director and global head of enterprise computing at Morgan Stanley's institutional
securities division. "Now, around 35 per cent of our servers are running Linux."

By 2005, two years ahead of schedule, the division plans to be running 80 per cent of
its systems on commodity hardware, most of them using Open Source and open
protocols for hardware independence. "When you run everything including the
operating systems off the network adding computing power is simple," explained
Birnbaum.

A study published by the Swiss consultancy Soreon Research GmbH concluded that
“Companies with a €1 million ($1.1 million) budget for office software can reduce their
costs as much as 20% by using OpenOffice software instead of Microsoft's Office
product. (…). And those running the open source Linux operating system instead of
Microsoft's Windows on their servers can save as much as 30%”. An interesting
conclusion of this study is that small and midsize enterprises may benefit only
marginally by using open source software. “A company with 10 computers, for
instance, can reduce its costs around 2% by using open source software. A larger
company with 100 computers can save 6% on office software and 7% on server
software.”296

Another research conducted by TheOpenEnterprise.com points out that 74% of the
corporate managers interviewed consider lower costs as the main benefit from the
usage of Open Source and Open standards-based software (see Figure 27 below.
And 66% of the same group of managers consider the cost of Open Source software

295 Source: bibliography 78
296 This study included 50 large German companies and organizations, as well as 30 software
retailers. Source: bibliography 102.

Open Technologies for An Open World Jean Binder

 112

to be between 25% and 75% lower than proprietary alternatives (See Figure 28
below).

Figure 27 – Benefits of Open Source / Standards-based software

Figure 28 – Comparison between Open Source and Proprietary software costs

Open Technologies for An Open World Jean Binder

 113

By opposition to the above cases, studies conducted by IDC research show that in
some cases proprietary solutions like Windows may appear cheaper – in the long run
– than Open Source alternatives. This study shows that Linux is certainly best for
web sites hosting but for other server applications, Windows may be cheaper, due to
reduced training costs. This study should be considered cautiously as it has been
sponsored by Microsoft, by interviewing 104 American IT managers, related to the
implementation of printer, security and file servers. One of the most important cost
differences was for a security server, which would cost USD 91.000 under Linux
compared to USD 70.000 for Windows (over 5 years). The main fact from the study is
the low participation of license costs in the total implementation of the system
(around 5%)297.

6.5. Evolution and Control: Two flavours, four strategies

Considering the elements discussed in the previous sections - and based on the
conclusions by Shapiro and Varian - four different strategies may be adopted by the
information suppliers (like software and hardware vendors and internet service
providers) when creating a technological paradigm. One criterion is the adoption of
open or closed standards (control); the second is the option to create a new
revolutionary technology or to keep the evolution of former technologies298. These
factors shall be recognised when implementing a technological change, to better
know the changing costs in advance, and to avoid lock-in situations. This section
concentrates in the analysis of the suppliers viewpoint.

6.5.1. Openness or Control

Proprietary architectures may give enormous benefits for the network enterprise built
around the companies controlling them, when the positive feedback is generated.
The controlling companies are the copyright owners and the producers of the core
technology. The control is kept when those companies believe their products to be
widely accepted without the help from certification and standard organisations, and
start to build a supplier and distribution network around their technologies. Normally
commercial coalitions are formed quicker than standards are approved, so their
chance to trigger a feedback effect is higher if the users are convinced of their
technological superiority. This has been the reasoning publicly defended by Microsoft
and Intel.

The major benefit for the controlling companies is when the network value becomes
higher than the competition. The feedback and lock-in effects are created and the
tendency for the network is only to grow until a new paradigm arrives or a complete
monopoly is created. Due to the feedback, new users are attracted to profit from the
high network value; due to the lock-in, existing users have problems to change of
technology.

297 Source : Bibliography 83
298 Source: bibliography 7, page 182.

Open Technologies for An Open World Jean Binder

 114

6.5.2. Performance or Compatibility

When implementing a new technology to replace the current generation, two options
exist: to ensure a backward compatibility – evolution -, or to create new functionalities
and a performance level that can convince the users to abandon their current product
in favour of the new one - revolution.

A compromise may sometimes be found and it’s by far the best option. Guarantying
the compatibility while giving more performance and functionalities will reduce the
changing costs – a precious argument to gather users from the previous technology
– while being attractive to new users.

This is the ideal situation and does not happen often in the information economy.
What may facilitate the users to migrate to the new technology is the existence of
conversion tools – to easily convert information in the old format – or the availability
of bridges, in which the new product can read information created by the previous
one. When the standards and formats are open, this is simply a question of
development. However, closed standards may give the controlling company the right
to legally avoid these features to exist, or to ask the payment of high license fees.
This is again a reason to implement products based on open standards and formats:
even if the customers don’t have high costs to terminate a lock-in situation, the
companies creating new technologies may be simply inhibited to innovate.

6.5.3. The strategies

 Control Openness
Compatibility Closed migration Open Migration
Performance Superiority by

Performance
Disruption

Table 4 – Evolution and Control strategies

To summarize the concepts of this section, let us briefly describe the four strategies:

! Closed Migration – This is normally the release of new versions of a proprietary

product, and should not present a risk (for the supplier or user) if the backward
compatibility is fully guaranteed, and the migration tasks are not complicated
enough to produce a high changing cost. Two examples of closed migration are
the successful replacement of DOS by Windows, and the limited usage of Mac
OS.

! Superiority by performance - This is the introduction of a new and proprietary

technology, incompatible with the dominant market solution. The changing costs
should be calculated upon the existence of bridges and conversion tools – tested
before to ensure a complete compatibility of the totality of the user information.
Attention should be made to the credibility of eventual announcements made by
the company owning the current market solution, to avoid the “vapourware” to
destroy innovation. A market analysis should also be done to verify the existence
of an open alternative, with similar changing costs, but with higher control – for

Open Technologies for An Open World Jean Binder

 115

the user. A thriving story is the implementation of the UNIX operating systems, by
opposition to the PS/2 and OS/2 failure to conquer the PC market.

! Open Migration – This is the preferred choice for the customers, with the solution

being offered by different hardware, software and service suppliers, reduced
changing costs, reduced risk of lock-in by the new product. For the supplier
(without the ambition to create a monopoly, and accepting the challenge
represented by the existence of innovative competitors) this is also a comfortable
situation, as it may benefit from a wider network – even with the help from the
competition – that can bring benefits when launching future initiatives or products.
The UNIX wars show that the success of this strategy is not always guaranteed,
and the creation of the single UNIX specification is a good example of the
perseverance needed to attain such a goal.

! Discontinuity – This happens when a new technology appears, and it’s

implemented by many suppliers. Its characteristics are similar to the previous
strategy, with the exception of the existence of changing costs. It’s also
favourable to the most competitive suppliers, able to provide an added-value
network of service and compatible hardware and software products. To exemplify,
the triumphant implementation of the OSI standard and the Internet protocols and
the flourishing Linux server market are good examples, by opposition to the
difficulty of Linux to conquer desktop users, with the need to improve the
compatibility bridges (like the Wine299 software) and migration tools (like
OpenOffice, that accepts documents created by Microsoft Office).

6.6. The shift of power

In the end of the 1960s - the beginning of the information age – the computer
manufacturers were focused in the production of machines, which came coupled to
the operating systems. As discussed in the beginning of this chapter, in the 1980s
the surge of the UNIX systems and the TCP/IP-based computer networks allowed
the companies to form strategic alliances becoming network enterprises. With the
consequent need for the flexible, interactive manipulation of computers, software
became the most dynamic segment of the industry.

Irony, it seems, is that again an operating system from the UNIX family is helping to
accelerate a paradigm shift: from software to services. This time the network was
also important. The computer networks worked as the media, but the social peer
networks were the real catalysts.

Figure 29 – UNIX and Linux catalysing the shift of informational power

299 http://www.winehq.com/

UNIX

Hacker
Network

Computer
Networks

Hardware Software Services

Linux

Open Technologies for An Open World Jean Binder

 116

This time IBM was one of the first big companies to react. Instead of considering
Linux as another concurrent of its 5 operating systems (zVM, zOS, VSE, AS400 and
AIX), IBM became part of the open source network, by sponsoring projects, creating
laboratories around the world dedicated to open the door of every hardware platform
and investing in Marketing300. Other major companies interested in promoting Linux
are Intel, HP, SAP, SAS and Oracle. There are two (non-exclusive) possible reasons
for this: the first is pure marketing, the second a potential service market around
Linux. According to TheOpenEnterprise.com (See Figure 30 below), 43% of the
companies may consider to implement enterprise applications.

Figure 30 – Potential applications to be hosted in Open Source solutions

6.6.1. Behind the marketing scenes

HP, IBM and Intel are big players in the hardware arena. Today they work together
with proprietary and open systems. In the case Linux growth previsions are true, and
it finally dominates the server market in the near future, their interest is to be part of
the new and powerful Linux network as hardware suppliers, keeping their market
share.

300 IBM won the first prize [of the Linux media awards, organized by Linux Media AG, with a jury of
authors, developers and leading members of the Open Source community] as the company who has
done the most to promote Linux during the year of 2002. source: Linux Magazine #25, November
2002.

Open Technologies for An Open World Jean Binder

 117

These companies will keep their investments in the current operating systems, and
will continue to actively participate in the Windows network. If the paradigm does not
happen, due to important changing costs - in a period of slim IT budgets -, and Linux
keeps a low part of the operating systems market, they have not lost their
investment. They will enter to history as Linux Maecenas, have a good image to the
open source community, and finally remain active in its market share.

6.6.2. The experience economy301

Let us consider one statement from Castells’ analysis of the classical theory of post-
industrialism: “Economic activity would shift from goods production to services
delivery. The demise of agricultural employment would be followed by the irreversible
decline of manufacturing jobs, to the benefit of service jobs that would ultimately form
the overwhelming proportion of employment. The more advanced an economy, the
more its employment and its production would be focused on services”302. An
extrapolation of this sentence would produce a complementary one: The more
advanced a company, the more its research and development would be focused on
the production of services. This is the strategy from IBM, followed by the other
companies.

The spread of the services realm, by the replacement of internal labour forces did not
happen as predicted by analysts like Rifkin303. The usage of highly specialized
consultancy services increased during the years preceding the Y2K issue, the
implementation of the Euro currency and the hype of Internet start-ups. They were
long-term and expensive contracts. The crisis originated by the flop of the Internet
bubble and accentuated by the spawn of terrorism and the menace of another gulf
war changed the figures and projections. The current tendency is to keep the
knowledge inside the enterprise, dedicated to satisfy the real business needs. The
services are still required, in a smaller scale and for short-term assignments, and
concentrated in the infrastructure. Stated another way, if knowledge is power, the
enterprises prefer to keep it internally pushing the core business to increase profit,
and to use external forces - specialized in the volatile technologies - to decrease
cost.

The installation of a new hardware, software or network component is surrounded by
several complementary activities – some already discussed in this document -, like
capacity planning, installation, migration from former systems, training, consolidation
of smaller servers into a large one, or into a cluster. The main advantages of Linux
and open standards for service providers are:

! The sharing of R&D costs with the other members of the open source network;
! The availability of the source and protocols for problem investigation and a better

understanding of the logic behind the software;
! The easier communication across different hardware and applications;
! The pervasiveness of Linux - able to run in any existing platform, and quickly

adaptable to eventual new ones - thus giving the choice to the service provider to

301 The study in this section is empirically based in my previous essay (e*conomy) and in my personal
observations and experience in the mainframe services market in the last decade.
302 In bibliography 1, page 218.
303 See bibliography 32.

Open Technologies for An Open World Jean Binder

 118

recommend hardware equipments from best partners, and to change these
partners without compromising its recommendations, and reduced need of
retraining.

This motivates the companies to participate in the standard committees, to be aware
before the technological changes, but mainly to create lobbies to influence decisions,
favouring technologies implemented by their coalitions, and blocking standards with
new innovations from the competition.

6.6.3. Branding

Open source software is a commodity market. In any commodity market, customers
value a brand they can trust. The brand building, in open source, is highly based in
supporting the community. Marketing strategies from the big companies joining the
open source movement (among them IBM, Intel and Oracle) consist in announcing
their investment in open source, by creating laboratories specialized in testing new
versions of open source software with hardware components and helping to port
open source operating systems to new hardware developments. Another common
tactic is to sponsor developers to produce open source code.

On the other hand, Microsoft has a hard work to change the bad image associated
with its brands. David Stutz – The man formerly responsible for Microsoft's anti-open
source strategy – said: "Recovering from current external perceptions of Microsoft as
a paranoid, untrustworthy, greedy, petty and politically inept organisation will take
years."304

304 Source: www.synthesist.net

Open Technologies for An Open World Jean Binder

 119

7. Politics

“Technology does not determine society. Nor does society script the course of technological change.
(…) Yet, it can, mainly through the state, suffocate its development.” Manuel Castells

In the previous sections, we discussed the social and economical viewpoints of the
adoption of open standards and open source. The provisory conclusions are the
need for open standards to guarantee the freedom of choice and a healthy market
competition, and the advantages of open source code to guarantee the innovative
pace of technology with benefits for the privacy and security. Now we will analyse the
political aspects: How can the European governments and the European Community
– in the scope of this analysis – recognise these needs, and how can them support
this openness?

Let us base the analysis in Castells’ opinion: “firms do not seek technology for the
betterment of humankind, but for profit and growth of value of their stocks. And
political institutions are normally oriented toward maximizing the competitiveness of
their constituent economies. Thus, profitability and competitiveness are the actual
determinants of technological innovation and productivity growth.”305

7.1. Openness by research

The academic environment is the natural root of the open standards, allowing the
research initiatives to spread over different institutions and countries. As already
discussed, this happened during the development of the UNIX operating system306
and the Internet Protocols307. In opposition to commercial research – oriented by the
market potentials of new products and technological features – academic researches
are normally oriented towards innovation and quality – even when economic
subsidies come from major companies like IBM. The political subsidies, whenever
they exist, should stimulate this openness to continue in the centre of the research,
and guarantee the quality of new technologies, which shall target the increase of
social welfare.

This does not mean the suppression of proprietary architectures and closed software
from the academic world. These technologies should continue to be investigated, and
open bridges should be built between proprietary alternatives and Open Source. One
of the possible solutions of the Microsoft antitrust case308 would be to allow selected
academic institutions to have access to selected parts of the source of selected
Microsoft products. This selectivity should be forced by political means to be
increased to the whole bunch of software code responsible for the interfaces
between the Microsoft operating systems and Microsoft products (e.g. Windows and
Internet Explorer) and in parts of the code where potential security or privacy
breaches may put the social or private security under threat by commercial
companies or crackers. Academic research could then be conducted to help to avoid

305 In bibliography 1, pg 94
306 See chapter 2.2.2
307 See chapter 2.3.3
308 Still under discussion when this document is being written.

Open Technologies for An Open World Jean Binder

 120

potential risks, where Microsoft already proved unable (or unwitting or even unwilling)
to act effectively.

The main objective of research in open technology, however, should be to guarantee
the open software to evolve and be able to compete with commercial software in the
same level. This happen by the technological improvements made by academic
research, and by teaching the usage of this software to the students.

7.2. Openness by usage

The wide usage of Open Source software and the increasing usage of open
standards by commercial software may be stimulated by letting the students use,
learn and disseminate this knowledge in their future working environments. As
already discussed, the license costs may have a low importance in the total
implementation of the system (around 5%), and the main part comes from training309.
The companies are more open to the implementation of pieces of software that are
well known by current and future employees, as this may reduce the training costs of
the technological departments and in the user community. This is the role of
governmental institutions behind academic subsidies: wherever as possible, open
software should be preferred to close and proprietary alternatives. Beyond the
academic institutions, public entities could follow the same path.

The increasing importance of institutional projects in the IT market, in domains like e-
government, education and health, is giving an important impulse in the usage of
Open Source. As discussed before, mixed solutions integrating proprietary software
and Open Source shall be considered, to guarantee the balance between the existing
and new applications. This enforces the need for Open Standards, to be able to
integrate both solutions, and to be able to easily migrate to new alternatives when
there are economical or functional advantages.310

The American government is highly influenced by the major IT players like Microsoft,
Intel and CISCO, who lobby against Open Source311. One of the arguments is the
risk of reducing the profit – and consequently employment – of big companies part of
ISC.312 The increase in the usage of Open Source software in Europe does not have
any negative impact in the economy, as the owners of main proprietary software are
not European companies. In the opposite, they may benefit the service companies,
by reducing the software license costs and allowing more projects to be
implemented.313 The European institutions and governments start to take advantage
of this fact by using Open Source software in internal projects, and if the e-
government initiatives really take shape in the next years, this may bring a real
advantage for the open platforms.

309 Source : Bibliography 83
310 Source: Datanews n°05, 7/02/2003, page 16
311 Source: bibliography 80
312 In December 2002, after a research indicating that Open Source was widely used in the
department of defense, this group of companies (united under the name ISC – Initiative for Software
Choice”) recommended the usage of proprietary solutions to the American government. Source:
Datanews n°38, 6/12/2003, Page 3.
313 It’s a fact today that the budget restrictions are the main reason for projects to be cancelled or
postponed. In 2002, lack of budget was behind 96% of the postponed projects in small and medium
Belgian companies. Source: Datanews n°40, 20/12/2003, Page 8.

Open Technologies for An Open World Jean Binder

 121

As an example, after some Italian and Brazilian regions, the Region of Brussels
(COCOF314) voted in February 2002 a proposal to impose the usage of Open Source
software. The usage of proprietary solutions may only be authorized in areas where
no open alternative exists, with the planned period for the full migration from
proprietary to Open Source software being only three years. Agoria315, a Belgian
entity representing many software suppliers, considered that legal interference from
the government in technological domains should not happen.316 During the writing of
this document, ISC, the same group that is responsible for lobbying the American
department of defense, is also pushing the Brussels government against such a
decision. The arguments used by the ISC are purely juridical, and are quite
incoherent with the practices of some companies in the very heart of the association
(see below).

Another good example comes from the Belgian government, which voted on the 7th
April 2003 a law to increase the transparency of electronic vote. The source code317
is available on the internet.318

7.3. Openness by law enforcement
“We need a clear citizens' vision of the way the Net ought to grow, a firm idea of the kind of media

environment we would like to see in the future. If we do not develop such a vision for ourselves, the
future will be shaped for us by large commercial and political power holders.” Rheingold

The most famous cases are always around Microsoft and the antitrust processes, run
by the American and European governments. As this process has been extensively
discussed319, we will rather analyse the ISC arguments against the usage of open
source by the Belgian governmental institutions.320 We will analyze each of the
arguments and show how can have an opposite interpretation and become a clear
pro-Open Source argumentation.

The first “Nefarious” situation would be the risk for those institutions to be restricted to
a single type of software systems. This is really a risk, but far higher for proprietary
solutions with closed file formats and protocols, and this is never mentioned by ISC.
In the future, if the institutions would like to migrate to newer software solutions, the
conversion of existing information and adaptation of technical interfaces could easily
be performed, with the help of documentation from the internet or the source code.

The second risk appointed by the ISC is the economical impact to the “Belgian
Software Industry”. Considering that most of the profit made by pure Belgian

314 COmmission COmmunautaire Française - http://www.cocof.be/
315 Covering a wide range of industrial sectors, Agoria represents a substantial portion of the Belgian
economy: the federation's 1,200-plus member companies account for nearly one third of all Belgian
exports of goods. Agoria's mission is to defend its members’ interests as fully as possible and to bring
all its influence to bear to improve the socio-economic environment in which they do business.
http://www.agoria.be/
316 Source: Datanews n°07, 21/02/2003, page 1
317 In theory, the source code of the software Digivote and Jites may be found on the site
http://elections.fgov.be/Nouveau/NouveauFr/Docunfr/codessources/Cdocu7nfr.htm. On the 5th May
nothing was yet available …
318 Source: Datanews n°16, 02/05/2003, page 1
319 A good article may be found in page 1, Datanews n°02, 17/01/2003.
320 Source: Bibliography 81

Open Technologies for An Open World Jean Binder

 122

companies comes from service, and service is always needed, independent of the
origin of the software, this argument is difficult to be understood.

A third argument, purely juridical, is that actions forcing institutions to use Open
Source software would be against OMC dispositions to ensure the freedom of
international commerce. Without entering in a juridical debate, we can easily
challenge this viewpoint by arguing the validity of agreements forcing hardware
suppliers to sell PCs with built-in Windows systems, with an implicit and mandatory
cost for the end-user.

The fourth ISC argument is that the software market is dynamic and competitive
enough to be self-ruled by commercial and technological differences. This is a very
valid argument that could be used against the public known fact that companies
making part of ISC are blocking the usage of Open Source solutions by building
commercial alliances.

The fifth argument, which comes from the ISC objectives, is to guarantee that all
pieces of software can participate equally in the market, without preferences or legal
restrictions. We should wait for the legal conclusions of the antitrust cases against
Microsoft, to see if legal restrictions are very independent of commercial lobbies.

7.4. Openness by stimulation
“Whatever chance remains for the survival of anything good may be in the preservation and availability

of information, the only commodity that will be cheaper and more convenient.” Ted Nelson

We discussed before that a mix between proprietary and open source alternatives
may be preferred to a monopoly situation from either side. Many companies are
highly influenced by mutual agreements, and ban open source solutions completely
from their IT environments. To compensate this fact, governmental institutions could
favour Open Source solutions and force the exchange of information with other
companies to happen by open protocols – like XML – instead of proprietary
standards – like MS-Word or MS-Excel spreadsheets. This can happen in e-
government domains like taxes and social security, starting to be implemented today,
and where conversions of software and file formats are already taking place.
Considering the perspectives of increasing demand by such services, they may
boom the open standards and open source adherence by the companies, which can
later expand the usage of such technologies in internal applications.

In Belgium, the first phase of a project to implement tax payment online, with the
development of 500 intelligent forms – a third of them oriented to the general public
and companies, two thirds for internal usage – has chosen XML as the format for
data exchange since 2001. This may give an impulse in the usage of XML in other
companies and citizens, for other applications.

Open Technologies for An Open World Jean Binder

 123

Part III – CODA

Open Technologies for An Open World Jean Binder

 124

8. Open Future
“Although there are those among us now who have been granted the gift of being able to glimpse

patterns of the future, probabilities tossed like dice on the uneven blanket of space and time, even
these gifted ones know that no single future has been preordained for us or our posterity. Events are

fluid. The future is like smoke from a burning forest, waiting for the wind of specific events and
personal courage to blow the sparks and embers of reality this way or that.” – Dan Simmons in The

Rise of Endymion

The roles of desktops and servers will continue, but the peer-to-peer concept will
allow them to act together, with groups of desktops joining forces to outperform
powerful servers. This concept will continue to propagate to several domains and
communities outside technology, with distant people gathering via the networks to
make face to big commercial monopolies, and dominant political parties. Democracy
rules will need to be reviewed, as the need for representatives will decrease, people
being able to give their own opinion at any time or any place, and have enough free
information to base their decision.

The real TCO - Total Cost of Ownership – is extremely difficult to be calculated, for
implementations of complex applications that require intensive computing capacity,
high availability, large databases, and communication with many users via the Net.
Of course, it must be considered, but it’s only one of the elements of a good analysis
matrix including factors like usability, compatibility with existing systems, potential
evolution of the hardware and software platform, and quality of support. Even if
specialists, consultants and service providers are there to provide the good answers,
a general knowledge about the infrastructure may increase the quality of the project
definition, and consequently reduce the risk factor in the decision making process.

As said by Rheingold, “More people must learn about that leverage and learn to use
it, while we still have the freedom to do so, if it is to live up to its potential. The odds
are always good that big power and big money will find a way to control access to
virtual communities; big power and big money always found ways to control new
communications media when they emerged in the past. The Net is still out of control
in fundamental ways, but it might not stay that way for long. What we know and do
now is important because it is still possible for people around the world to make sure
this new sphere of vital human discourse remains open to the citizens of the planet
before the political and economic big boys seize it, censor it, meter it, and sell it back
to us.”

Not all software has to be open-source, though. Only that software that is critical to
research, to security, or to ensure communication with other companies has to be
open-source. Open protocols and open formats should be used essentially in critical
areas, where the information must be always accessible independently of the usage
of specific pieces of software. It’s very reasonable for everything else to be
proprietary and to then compete on that basis in the marketplace. It’s how companies
like HP, Oracle, Microsoft and IBM makes billions in revenue. It’s how companies and
application developers build their infrastructure. In fact, the better all the pieces –
open source and proprietary – are integrated, the more the industry advances and
the better everybody can compete with their proprietary software, applications,
services, and all the things that drive the IT economy.

Open Technologies for An Open World Jean Binder

 125

The usage of alternatives like MDA and XML may reduce the negative impact of
proprietary alternatives, by virtually eliminating the risk of imprisonment in closed
platforms and formats. However, they are not the only elements to be considered –
as demonstrated in the part 2 of this study – and their usage must be clear and
complete to be a real advantage. If the software platforms are built around XML-
based documents, this solution must be implemented in every important part of the
software, to hold all the information. No piece of closed format should be used for
strategic data.

The social and economical advantages for most countries and small and medium
companies should really push the governments to take part on this battlefield. As
proven in the recent gulf war, economical and political fights are more important and
take longer than the military ones. However, as stated by Himanen, “The hacker
open model could be transformed into a social model. (…) We have seen that the
hacker model can bring about great things in cyberspace without governments and
corporations as mediators. It remains to be seen what great things individuals’ direct
cooperation will accomplish in our ‘flesh reality’ ”321.

8.1. INCA322

Based on this study, a future landscape of the technical infrastructure has been
suggested and is available online (http://www.k-binder.be/INCA/). After browsing the
online chart, the reader can come back to the document, read selected topics and
leave comments in the website.

321 See bibliography 4, page 81.
322 INCA stands for Intelligent and Net-Centric Architecture. I coined this term to define a possible way
of connecting all technologies described on the previous chapters, and a possible evolution of the
infrastructure platform – if implemented by open-minded spirits. As its name suggests, the network will
replace the processor, being the heart of the architecture.

http://www.k-binder.be/INCA/

Open Technologies for An Open World Jean Binder

 126

Part IV – Annexes

Open Technologies for An Open World Jean Binder

 127

Appendix A. The Open book

This thesis is published online to allow Internet readers to read, comment and
complement the theories - the final part of the conclusion is only available in the
online version. The complexity of the document structure, with internal hyperlinks, did
not allow the creation of a simple HTML document. For the moment, a web site has
been created using LAMP to allow the readers to comment the overall work and form
an online community. PDF has been chosen as a format for the document
visualization.

The proprietary format will give place to XML, and LAMP (Linux/ Apache/ MySQL/
PHP) will be used in the technical infrastructure for its visualization. The online
version will also contain hyperlink references to the products, brands, books and
sites discussed in this document.

In parallel, to revise the content, newsgroups will be used to validate, and
complement the concepts and theories.

To access the online version, go to www.k-binder.be and select “papers - thesis”.

http://www.k-binder.be/

Open Technologies for An Open World Jean Binder

 128

Appendix B. Standards Organizations

Some of the most important organizations that participate with standard definitions,
studies, analysis and control of the Internet protocols, names and addresses are323:

! World Wide Web Consortium (W3C)324 – Created in October 1994, the W3C

develops interoperable technologies (specifications, guidelines, software, and
tools) to lead the Web to its full potential. W3C is a forum for information,
commerce, communication, and collective understanding.

! The Internet Engineering Task Force (IETF)325 – The Internet Engineering

Task Force (IETF) is a large open international community of network
designers, operators, vendors, and researchers concerned with the evolution
of the Internet architecture and the smooth operation of the Internet. It is open
to any interested individual.

! Internet Activities Board (IAB)326 – Created in September 1984, IAB is a

technical advisory group of the Internet Society, who discuss issues pertinent
to the Internet and set Internet policies through decisions and task forces. The
IAB designates some Request For Comments (RFC) documents as Internet
standards, including Transmission Control Protocol/Internet Protocol (TCP/IP)
and the Simple Network Management Protocol (SNMP). The IAB provides
advice to the IESG on working group formation and the architectural
implications of the IETF working group efforts.

! Internet Engineering Steering Group (IESG)327 – The IESG is the standards

approval board for the IETF. It is responsible for technical management of
IETF activities and the Internet standards process, administering the process
according to the rules and procedures that have been ratified by the ISOC
Trustees. The IESG ratifies or corrects the output from the IETF's Working
Groups, gets WGs started and finished, and makes sure that non-WG drafts
that are about to become RFCs are correct.

! The Internet Research Task Force (IRTF)328 – Its mission is to promote

research of importance to the evolution of the future Internet by creating
focused, long-term and small Research Groups working on topics related to
Internet protocols, applications, architecture and technology. The Research
Groups are expected to have the stable long term (with respect to the lifetime
of the Research Group) membership needed to promote the development of
research collaboration and teamwork in exploring research issues.
Participation is by individual contributors, rather than by representatives of
organizations.

323 Sources: bibliography 13,27 and 46, RFC 3160 (http://www.iesg.org/tao.html), RFC 2026
(http://www.iesg.org/rfc/rfc2026.txt).
324 http://www.w3.org/
325 http://www.ietf.org/
326 http://www.iab.org/
327 http://www.iesg.org/iesg.html
328 http://www.irtf.org/. See also ftp://ftp.isi.edu/in-notes/rfc2014.txt

Open Technologies for An Open World Jean Binder

 129

! Internet Society (ISOC)329 - Brought into existence in January 1992, the

Internet Society is a professional membership organization of Internet experts
that comments on policies and practices additionally to overseeing a number
of other boards and task forces dealing with network policy issues.

! Internet Assigned Numbers Authority (IANA)330 – Based at ICANN, IANA is in

charge of all "unique parameters" on the Internet, including IP (Internet
Protocol) addresses.

! The Internet Corporation for Assigned Names and Numbers (ICANN)331 –

ICANN is the non-profit corporation that was formed to assume responsibility
for the IP address space allocation, protocol parameter assignment, domain
name system management, and root server system management functions.

! International Organization for Standardization (ISO)332 — ISO is an

international standards organization responsible for a wide range of standards,
including many that are relevant to networking. Its best-known contribution is
the development of the OSI reference model and the OSI protocol suite.

! American National Standards Institute (ANSI)333 – Founded in October 1918,

ANSI - which is also a member of the ISO - is the coordinating body for
voluntary standards groups within the United States. ANSI developed the
Fiber Distributed Data Interface (FDDI) and other communications standards.

! European Telecommunications Standards Institute (ETSI)334 – Created in

1989, ETSI plays a major role in developing a wide range of standards and
other technical documentation as Europe's contribution to worldwide
standardization in telecommunications, broadcasting and information
technology. Its prime objective is to support global harmonization by providing
a forum in which all the key players can contribute actively. It tries to
compensate ANSI’s influence and it developed the standards Euro-RNIS and
GSM.

! Electronic Industries Association (EIA)—EIA specifies electrical transmission

standards, including those used in networking. The EIA developed the widely
used EIA/TIA-232 standard (formerly known as RS-232).

! Institute of Electrical and Electronic Engineers (IEEE)335 – Founded in 1963,

the IEEE is a non-profit, technical professional association of more than
377,000 individual members in 150 countries, which defines networking and
other standards. The IEEE developed the widely used LAN standards IEEE
802.3 and IEEE 802.5.

329 http://www.isoc.org/
330 http://www.iana.org/
331 http://www.icann.org/
332 http://www.iso.org/
333 http://www.ansi.org/
334 http://www.etsi.org/
335 http://www.ieee.org/

Open Technologies for An Open World Jean Binder

 130

! International Telecommunication Union (ITU)336 – Founded on 17 May 1865,
the ITU – headquartered in Geneva, Switzerland – is an international
organization within the United Nations System where governments and the
private sector coordinate global telecom networks and services.

! ITU Telecommunication Standardization Sector (ITU-T)337 – It is one of the

three Sectors of the International Telecommunication Union (ITU). It was
created on 1 March 1993, replacing the former International Telegraph and
Telephone Consultative Committee (CCITT) whose origins go back to 1865.
Its mission is to ensure an efficient and on-time production of high quality
standards covering all fields of telecommunications.

! Object Management Group (OMG)338 – The OMG was founded in April 1989

by eleven companies339 and in October 1989, it began independent operations
as a not-for-profit corporation, including in 2002 about 800 members. The
OMG was formed to create a component-based software marketplace by
hastening the introduction of standardized object software. The organization's
charter includes the establishment of industry guidelines and detailed object
management specifications to provide a common framework for application
development.

336 http://www.itu.int/
337 http://www.itu.int/ITU-T/
338 http://www.omg.org/
339 Including 3Com Corporation, American Airlines, Canon, Inc., Data General, Hewlett-Packard,
Philips Telecommunications N.V., Sun Microsystems and Unisys Corporation

Open Technologies for An Open World Jean Binder

 131

Appendix C. References

C.1. Trademarks

All trademarks are the property of their respective owners.

All the photos are © 2002 Joyce Binder.

C.2. Figures

Figure 1 – The three tiers under the scope of the first part of this analysis ______________ 1
Figure 2 – Examples of de facto standards and their connectivity _____________________ 8
Figure 3 – IBM ZSeries 900 __ 14
Figure 4 – HP RISC rp8400__ 15
Figure 5 – DELL Poweredge 1600SC __ 15
Figure 6 – Traditional Server families__ 15
Figure 7 – The new generation of servers _______________________________________ 16
Figure 8 – Desktop x Network computers _______________________________________ 19
Figure 9 – UNIX Chronology___ 29
Figure 10 – Windows client evolution __ 36
Figure 11 – Windows server evolution__ 37
Figure 12 – Operating systems – Openness and scalability _________________________ 41
Figure 13 – Operating systems – set-up costs and proven reliability __________________ 41
Figure 14 – The OSI model - Seven layers and two categories _______________________ 42
Figure 15 – Correspondence between the OSI layers and some Internet Protocols. ______ 43
Figure 16 – Model Driven Architecture___ 54
Figure 17 – CORBA request from client to object _________________________________ 56
Figure 18 – CORBA remote invocation flow using ORB-to-ORB communication ________ 56
Figure 19 – Java platform components ___ 61
Figure 20 – Java compiler and interpreter ______________________________________ 62
Figure 21 – The Java platform and editions _____________________________________ 62
Figure 22 - The Components of Microsoft .NET-Connected Software _________________ 66
Figure 23 - Microsoft Host Integration Server ___________________________________ 67
Figure 24 – Network power spiral and external factors ____________________________ 91
Figure 25 – Two cycles of positive feedback ____________________________________ 101
Figure 26 – Negative feedback___ 102
Figure 27 – Benefits of Open Source / Standards-based software____________________ 112
Figure 28 – Comparison between Open Source and Proprietary software costs ________ 112
Figure 29 – UNIX and Linux catalysing the shift of informational power _____________ 115
Figure 30 – Potential applications to be hosted in Open Source solutions _____________ 116

Open Technologies for An Open World Jean Binder

 132

C.3. Tables

Table 1 – Comparison of Open Source licensing practices ...5
Table 2 – Comparison between de facto and de juri standards ...9
Table 3 - Cost comparison summary..109
Table 4 – Evolution and Control strategies ...114

Open Technologies for An Open World Jean Binder

 133

Appendix D. Bibliography

Books

1. The Information Age: Economy, Society and Culture
Volumes I – The Rise of the Network Society
© 1996,2000 Manuel Castells
Blackwell Publishers Ltd
http://sociology.berkeley.edu/faculty/castells/

2. The Information Age: Economy, Society and Culture

Volume II – The Power of Identity
© 1996,2000 Manuel Castells
Blackwell Publishers Ltd

3. The Information Age: Economy, Society and Culture

Volume III – End of Millenium
© 1996,2000 Manuel Castells
Blackwell Publishers Ltd

4. The Hacker Ethic and the Spirit of the Information Age

© 2001 Pekka Himanen
Prologue © 2001 Linus Torvalds
Epilogue © 2001 Manuel Castells
Random House, Inc
ISBN 0-375-50566-0
http://www.hackerethic.org

5. Open Sources – Voices from the Open Source Revolution

Chris DiBona, Sam Ockman & Mark Stone (many authors)
© 1999 O’Reilly & Associates
ISBN 1-56592-582-3
http://www.oreilly.com/catalog/opensources/book/toc.html

6. The Cathedral and the Bazaar

© Eric Raymond
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
(Online version)

7. Economie de l’information

French translation of: Information Rules, 1st Edition
© 1998 Carl Shapiro & Hal Varian
Harvard Business School Press
http://www.inforules.com/

http://sociology.berkeley.edu/faculty/castells/
http://www.hackerethic.org/
http://www.oreilly.com/catalog/opensources/book/toc.html
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.inforules.com/

Open Technologies for An Open World Jean Binder

 134

8. Qu’est-ce que le virtuel

Pierre Levy
© 1998 La découverte
ISBN 2-7071-2835-X
http://hypermedia.univ-paris8.fr/pierre/virtuel/virt0.htm

9. L’intelligence collective : pour une anthropologie du cyberspace

Pierre Levy
© 1997 La découverte
ISBN 2-7071-2693-4

10. The Age of Spiritual Machines
© 1999 Ray Kurzweil
Ed. Phoenix
http://www.kurzweilai.net/meme/frame.html?main=/articles/art0281.html
ISBN 0-75380-767-X

11. MySQL et PHP

Philippe Rigaux
© 2001 Éditions O’Reilly – Paris
http://www.oreilly.fr/catalogue/mysql_php.html
ISBN 2-84177-123-7

12. UML Specification
OMG
http://www.omg.org/technology/documents/formal/uml.htm

13. Internet-Enabled Business Intelligence

William A. Giovinazzo
© 2003 Pearson Education, Inc
ISBN 0-13-040951-0
http://vig.pearsoned.com/store/product/1,3498,store-562_isbn-
0130409510,00.html

14. Exploring IBM zSeries and S/390 Servers

Jim Hoskins and Bob Frank
Seventh edition
© 2002 Maximum Press
ISBN 1-885068-89-1
http://www.maxpress.com/catalog/mainframes.html

15. Operating Systems Handbook

© 2001 Bob DuCharme
ISBN 0-07-017891-7
http://www.snee.com/bob/opsys.html

16. UNIX as a second language

Bob Johnson
ISBN 0-9650929-1-7

http://hypermedia.univ-paris8.fr/pierre/virtuel/virt0.htm
http://www.kurzweilai.net/meme/frame.html?main=/articles/art0281.html
http://www.oreilly.fr/catalogue/mysql_php.html
http://www.omg.org/technology/documents/formal/uml.htm
http://vig.pearsoned.com/store/product/1,3498,store-562_isbn-0130409510,00.html
http://vig.pearsoned.com/store/product/1,3498,store-562_isbn-0130409510,00.html
http://www.maxpress.com/catalog/mainframes.html
http://www.snee.com/bob/opsys.html

Open Technologies for An Open World Jean Binder

 135

17. The Road Ahead

Bill Gates
ISBN 0-670-77289-5
http://www.roadahead.com/

18. Le hold-up planétaire: La face cachée de Microsoft

Roberto Di Cosmo / Dominique Nora
ISBN 2-7021-2923-4
http://www.pps.jussieu.fr/~dicosmo/HoldUp/

19. Instant HTML

Alex Homer, Chris Ullman and Steve Wrigh
© 1997 Wrox Press
ISBN 1-861001-56-8
http://www.wrox.com/books/1861001568.htm

20. The Virtual Community

©1998 Howard Rheingold
http://www.rheingold.com/vc/book/intro.html
(Online version)

21. Sexe, Mensonges et Internet

Yves Thiran
© 2000 Cordon Art
ISBN 2-8040-1493-2
http://www.labor.be

22. Internet, et après ?

Dominique Wolton
© 2000 Flammarion
ISBN 2-08-081459-1

23. L’imposture informatique

François de Closets / Bruno Lussato
© 2000 Librairie Arthème Fayard
ISBN 2-213-60849-0

24. Computer Science : an overview

J.Glenn Brookshear
© 1997 Addison Wesley Longman, Inc
ISBN 0-8053-4632-5

25. XML Complete

Richard Mills and Tom Cirtin
© 2001 SYBEX, Inc
ISBN 0-7821-4033-5
http://www.sybex.com/

http://www.roadahead.com/
http://www.pps.jussieu.fr/~dicosmo/HoldUp/
http://rapid.wrox.co.uk/books/1568/
http://www.rheingold.com/vc/book/intro.html
http://www.labor.be/
http://www.sybex.com/

Open Technologies for An Open World Jean Binder

 136

Papers

26. Software Development: Past, Present and Future - Trends and Tools
Patrick Gerland
http://www.ons.dz/unfpa/papers/nidi_pg.pdf

27. Technologies du multimédia, des télécommunications et de l'Internet

[version 7.57]
Université de Liège - Institut d'Electricité Montefiore
Prof. Marc Van Droogenbroeck
http://www.ulg.ac.be/telecom/multimedia/dir7325/total-multimedia.pdf

28. Information paper - Internet Domain Name System Basics

ITU
Document INF/6-E - 14 October 2002
http://www.itu.int/osg/spu/mina/2002/inf6-E.html

29. XML in practice
© 2000 Xephon plc

30. The XML files

Aaron Skonnard
© 2002 Microsoft Corporation

Essays

31. Peer to peer: from technology to politics to a new civilisation?
Michel Bauwens

32. e*conomy – The Experience economy

http://www.k-binder.be/Papers/
Jean Binder

Articles

33. Datanews
2002: numbers x
2003:

34. WIRED - January 2003

Spectrum wants to be free (page 082)
Kevin Werbach

35. WIRED - January 2003

Linux for the Wal-Mart Crowd (page 085)
Michael Robertson

36. Financial Times

January 27 2003
IBM push on grid computing
Fiona Harvey

http://www.ons.dz/unfpa/papers/nidi_pg.pdf
http://www.ulg.ac.be/telecom/multimedia/dir7325/total-multimedia.pdf
http://www/
http://www.k-binder.be/Papers/

Open Technologies for An Open World Jean Binder

 137

Internet

37. The Evolution of High-End Servers
http://www.esj.com/features/article.asp?EditorialsID=120

38. The Evolution of the Unix Time-sharing System
Dennis M. Ritchie - Bell Laboratories
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html

39. Perspective: Moving beyond creative cloning
http://news.com.com/2010-1071-965752.html

40. BSD Operating Systems: Perspective
http://www.gartner.com/DisplayDocument?id=308056&ref=g_search

41. A Condensed History of Personal Computing
http://www.landiss.com/history.htm

42. Windows Desktop Operating Systems
http://www.microsoft.com/windows/winhistorydesktop.mspx

43. Windows Server Operating Systems
http://www.microsoft.com/windows/winhistoryserver.mspx

44. Internet Protocol
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ip.htm

45. TCP/IP
CISCO
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ap1.ht
m

46. Network Basics
CISCO
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm#xtocid5

47. Internetworking Technology Handbook
CISCO
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/

48. DNS – Introduction
ITU / Nominum
http://www.itu.int/itudoc/itu-t/workshop/enum/011.html

49. Standards and Specifications List
IST - Information Society Technologies
http://www.diffuse.org/standards.html

50. RFC 1336 - Who's Who in the Internet
G. Malkin / Xylogics
http://www.iesg.org/rfc/rfc1336.txt

http://www.esj.com/features/article.asp?EditorialsID=120
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://www.diffuse.org/standards.html
http://www.iesg.org/rfc/rfc1336.txt

Open Technologies for An Open World Jean Binder

 138

51. RFC 2026 - The Internet Standards Process - Revision 3

S. Bradner / Harvard University
http://www.iesg.org/rfc/rfc2026.txt

52. RFC 3160 – The TAO of IETF
S. Harris / Merit Network
http://www.iesg.org/tao.html

53. History of ARPANET
Michael Hauben
http://www.dei.isep.ipp.pt/docs/arpa.html

54. How the Internet Really Works
Vinton Cerf
http://www.netlingo.com/more/cerfart.html

55. Computer Networking: Global Infrastructure for the 21st Century
Vinton Cerf
http://www.cs.washington.edu/homes/lazowska/cra/networks.html

56. The Internet After the Fad
Remarks of Dr. Robert Metcalfe at the University of Virginia
May 30, 1996
http://americanhistory.si.edu/csr/comphist/montic/metcalfe.htm

57. Cramming more components onto integrated circuits
Gordon E. Moore, 1965
http://www.intel.com/research/silicon/moorespaper.pdf

58. The Third Place
Jeff Tidwell
http://www.infonortics.com/vc/1999/tidwell/sld001.htm

59. The future of networking
© BRIE 1993 - Research Paper by Michael Borrus and François Bar
http://brie.berkeley.edu/~briewww/pubs/rp/network.html

60. From Partial to Systemic Globalization: International Production Networks in
the Electronics Industry
Dieter Ernst - April 1997
http://brie.berkeley.edu/~briewww/pubs/wp/wp98.html

61. The Matrix: Computer Networks and Conferencing Systems Worldwide
John S. Quarterman
© 1990 Digital Press
http://www.mids.org/books/matrix/

62. The Future of Networking
Michael Borrus and François Bar
© 1993 by BRIE - March 16, 1993
http://e-conomy.berkeley.edu/publications/wp/network.html

http://xxx/
http://xxx/
http://www.dei.isep.ipp.pt/docs/arpa.html
http://xxx/
http://www.cs.washington.edu/homes/lazowska/cra/networks.html
http://xxx/
http://www.intel.com/research/silicon/moorespaper.pdf
http://xxx/
http://xxx/
http://xxx/
http://www.mids.org/books/matrix/
http://xxx/

Open Technologies for An Open World Jean Binder

 139

63. Ted Nelson and Xanadu
© 1993-2000 Christopher Keep, Tim McLaughlin, Robin Parmar
http://www.iath.virginia.edu/elab/hfl0155.html

64. The Identity Wars
Enterprise Systems
By John Harney - ASPWatch
http://esj.com/features/article.asp?EditorialsID=88

65. New computer chip: useful tool or privacy invasion?
Paul Van Slambrouck - The Christian Science Monitor
http://www.csmonitor.com/durable/1999/02/16/fp2s2-csm.shtml

66. Intel Nixes Chip-Tracking ID
Wired News - Declan McCullagh
http://www.wired.com/news/politics/0,1283,35950,00.html

67. Intel on Privacy: 'Whoops!'
Wired News - Polly Sprenger
http://www.wired.com/news/politics/0,1283,35950,00.html

68. HTTP State Management Mechanism

IETF / RFC 2109
http://www.iesg.org/rfc/rfc2109.txt

69. Worldwide Linux Operating Environments Forecast, 2002–2006: Client
Shipments Pick Up the Pace
Analyst: Al Gillen
© IDC 2002
http://www.hp.com/united-
states/linux/images/Linux_Operating_Forecast_2002-2006.pdf

70. Open Standards - Definition
National Library of Canada
http://www.nlc-bnc.ca/9/13/p13-103-e.html

71. Open Standard definition
The IT University of Copenhagen
http://linuxlab.dk/openstandards/

72. Deciphering the open-source war
Bruce Perens
Cnet News.com
http://news.com.com/2010-1078-855155.html

73. More Than a Gigabuck: Estimating GNU/Linux's Size
©2001 David A. Wheeler
http://www.dwheeler.com/sloc

http://xxx/
http://xxx/
http://www.csmonitor.com/durable/1999/02/16/fp2s2-csm.shtml
http://www.wired.com/news/politics/0,1283,35950,00.html
http://www.wired.com/news/politics/0,1283,35950,00.html
http://xxx/
http://www.hp.com/united-states/linux/images/Linux_Operating_Forecast_2002-2006.pdf
http://www.hp.com/united-states/linux/images/Linux_Operating_Forecast_2002-2006.pdf
http://xxx/
http://xxx/
http://news.com.com/2010-1078-855155.html
http://www.dwheeler.com/sloc

Open Technologies for An Open World Jean Binder

 140

74. Counting potatoes: The size of Debian 2.2

©2001 Jesús M. González-Barahona, Miguel A. Ortuño Pérez, Pedro de las
Heras Quirós, José Centeno González and Vicente Matellán Olivera.
http://people.debian.org/~jgb/debian-counting/counting-potatoes/

75. Microsoft Windows 2000 Server to Linux Comparison
© 2001 Microsoft
http://members.microsoft.com/partner/products/Servers/Windows2000Server/
Windows_2000_Server_to_Linux_Comparison.aspx

76. A strategic comparison of Windows vs. Unix
© 2001 LinuxWorld.com / Paul Murphy
http://www.linuxworld.com/site-stories/2001/1018.tco.html

77. Linux vs. Windows - Total Cost of Ownership Comparison
© 2002 Cybersource® Pty. Ltd.
http://www-1.ibm.com/linux/linuxvswindowstco.pdf

78. Unilever moves to Linux for savings
31-01-2003
Andy McCue.
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Strategy/2
0030131023

79. Morgan Stanley turns to Linux
30-01-2003
Jonathan Collins
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Strategy/2
0030130004

80. "Fixer une frontière à l'open source"
28-11-2002
Jose Delameilleure
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/20021128
013

81. Un décret pro-logiciels libres jugé 'inopportun' et "néfaste"
25-03-2003
Olivier Fabes
http://www.vnunet.be/datanews/detalle.asp?ids=/News/Top_Stories/Enterprise
_Computing/20030325006

82. Retired Microsoft man issues Linux warning
20-02-2003
Nick Farrell
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Technolo
gy/20030220015

http://people.debian.org/~jgb/debian-counting/counting-potatoes/
http://xxx/
http://xxx/
http://xxx/
http://xxx/
http://www-1.ibm.com/linux/linuxvswindowstco.pdf
http://xxx/
http://xxx/
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Strategy/20030130004
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Strategy/20030130004
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/20021128013
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/20021128013
http://www.vnunet.be/datanews/detalle.asp?ids=/News/Top_Stories/Enterprise_Computing/20030325006
http://www.vnunet.be/datanews/detalle.asp?ids=/News/Top_Stories/Enterprise_Computing/20030325006
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Technology/20030220015
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/Technology/20030220015

Open Technologies for An Open World Jean Binder

 141

83. Linux plus cher que Windows

04-12-2002
Jose Delameilleure
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/20021204
009

84. Understanding XML
Eric Armstrong
http://java.sun.com/webservices/docs/1.0/tutorial/doc/IntroXML.html

85. Clear-cut choices in battle over Web services
By Brad Murphy
Special to ZDNet - December 12, 2002
http://zdnet.com.com/2100-1107-977034.html

86. What's Next: The Future of Web Services
Microsoft
http://msdn.microsoft.com/webservices/understanding/whatsnext/default.aspx

87. What are XML Web Services?
Microsoft - January 14, 2002
http://www.microsoft.com/net/basics/xmlservices.asp

88. .NET Glossary
Microsoft - March 31, 2003
http://www.microsoft.com/net/basics/glossary.asp

89. How to Get .NET
7 Steps to Connecting Your World of Information, People, Systems, and
Devices
Microsoft - September 13, 2002
http://www.microsoft.com/net/basics/glossary.asp

90. Defining the Basic Elements of .NET
Microsoft - January 24, 2003
http://www.microsoft.com/net/basics/whatis.asp

91. What Is .NET?
Microsoft
http://www.microsoft.com/net/basics/

92. Whatis: .NET
searchWebServices.com Definition
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci342248,00.ht
ml

93. Microsoft® Host Integration Server 2000 Product Overview
© 2002 Microsoft Corporation
http://www.microsoft.com/hiserver/techinfo/HISoverviewWP.pdf

http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/20021204009
http://www.vnunet.be/detalle.asp?ids=/News/Enterprise_Computing/20021204009
http://java.sun.com/webservices/docs/1.0/tutorial/doc/IntroXML.html
http://zdnet.com.com/2100-1107-977034.html
http://msdn.microsoft.com/webservices/understanding/whatsnext/default.aspx
http://www.microsoft.com/net/basics/xmlservices.asp
http://www.microsoft.com/net/basics/glossary.asp
http://www.microsoft.com/net/basics/glossary.asp
http://www.microsoft.com/net/basics/whatis.asp
http://www.microsoft.com/net/basics/
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci342248,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci342248,00.html
http://www.microsoft.com/hiserver/techinfo/HISoverviewWP.pdf

Open Technologies for An Open World Jean Binder

 142

94. WEB SERVICES AND OPEN SOURCE

Preston Gralla
Part 1:
http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci868183,00.ht
ml
Part 2:
http://searchwebservices.techtarget.com/tip/1,289483,sid26_gci870011,00.ht
ml?FromTaxonomy=%2Fpr%2F288973

95. LAMP Lights the Way to Web Services for Financial Reports Firm
08/02/2002 - Robert McMillan
http://www.oetrends.com/cgi-bin/page_display.cgi?75

96. XML and the Second-Generation Web
JON BOSAK and TIM BRAY - May 06, 1999
http://www.sciam.com/article.cfm?articleID=0008C786-91DB-1CD6-
B4A8809EC588EEDF

97. Introduction to OMG's Unified Modeling Language™ (UML™)
© 1997-2002 Object Management Group, Inc.
http://www.omg.org/gettingstarted/what_is_uml.htm

98. UML 2001: A standardization Odissey
Cris Kobryn
© 1999 ACM 0002-0782/99/1000
(This article appeared in Communications of the ACM, vol. 42, no. 10, October
1999)
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-
Kobryn.pdf

99. MDA® Specifications
© 1997-2003 Object Management Group, Inc.
http://www.omg.org/mda/specs.htm

100. CORBA BASICS
 © 1997-2003 Object Management Group, Inc.

http://www.omg.org/gettingstarted/corbafaq.htm

101. Extreme Programming and Open Source Software
Message Posted 13 Nov 2000 by “apm” and replies
http://www.advogato.org/article/202.html

102. Study: Big companies save big from open source

By John Blau
© IDG News Service, 05/08/03
http://www.nwfusion.com/news/2003/0508studybigc.html

http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci868183,00.html
http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci868183,00.html
http://searchwebservices.techtarget.com/tip/1,289483,sid26_gci870011,00.html?FromTaxonomy=%2Fpr%2F288973
http://searchwebservices.techtarget.com/tip/1,289483,sid26_gci870011,00.html?FromTaxonomy=%2Fpr%2F288973
http://www.oetrends.com/cgi-bin/page_display.cgi?75
http://www.sciam.com/article.cfm?articleID=0008C786-91DB-1CD6-B4A8809EC588EEDF
http://www.sciam.com/article.cfm?articleID=0008C786-91DB-1CD6-B4A8809EC588EEDF
http://xxx/
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.omg.org/mda/specs.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.nwfusion.com/news/2003/0508studybigc.html

Open Technologies for An Open World Jean Binder

 143

Seminars & Commercial Presentations

103. Open Source and Free Software
 Richard M. Stallman – GNU Project

104. e-mail evolution
 By Eric Allman, author of sendmail

105. Intel and Linux
 Rod O'Shea - EMEA Enterprise Business Director - Intel

106. SAS and Linux
 Patrick Xhonneux - Director Business Development - SAS Institute

107. Oracle and Linux
 Dries Cuypers - Product Marketing Manager - Oracle Belgium

108. SAP and Linux
 Denis Rousseau - Business Development Manager - SAP AG

109. HP and Linux
 Urs Rengli - Director Marketing and Alliances EMEA - HP

110. IBM and Linux
 Several IBM speakers

111. High Availability Solutions for Linux
 John Banfield - EMEA Director - Steeleye

Open Technologies for An Open World Jean Binder

 144

Appendix E. Index

.

.NET · 37, 63, 65, 66, 67, 68, 71, 73, 141

3

3COM · 91

A

Abacus · 97
academic · 7, 9, 10, 17, 39, 43, 45, 51, 87,

90, 91, 92, 93, 119, 120
Adaptive Software Development · 75
Agile Development · 75
Agoria · 121
Ahmdal · 14
AIX · 28, 40, 70, 101, 116
Alpha · 31
Amiga · 19, 31
ANSI · 80, 129
Apache · 5, 51, 69, 70, 71, 73, 127
API · 28, 61
Apple · 19, 28, 35, 38, 39, 40, 92, 99, 106
Applets · 64
Appliances · 34, 38
Application Programming Interfaces

API · 23
ARPANET · 25, 45, 47, 93, 138
AS/400 · 67, 101
AS400 · 106, 107, 116
ASP · 13, 37, 50, 51, 66
Assembler · 48, 80
AT&T · 25, 26, 27, 28
Autonomic Computing · 18
AXIS · 73

B

B2B · 72
B2C · 72
Banyan · 28, 37
BASIC · 19, 35, 39
BBS · 93

BD-X · 71
BEA · 68, 73
Belgian · vi, 32, 44, 64, 110, 120, 121
Bell Labs · 25
Berkeley · 26, 27, 31, 43
Bibliography 1 · 35, 45, 46, 91, 92, 98
binary digits

bits · 49, 80
BIND · 6, 44
bits · 44, 80
bluetooth · 20
Booch’93 · 57
Brussels · 121
BS2000 · 14
BSD · 5, 6, 26, 31, 43, 137

C

C# · 60, 66
C++ · 55, 60, 61, 66
CAE · 28
Caldera · 31
CCITT · 130
CERN · 82, 94
Certification · 11
CGI scripts · 51
Channel Definition Format

Microsoft CDF · 84
CISCO · 120, 137
Clusters · 33
COBOL · 21, 49
COCOF · 121
COCOMO · 103
ColdFusion · 71
Collective ownership

XP · 77
Commodore · 19
Common Object Request Broker

Architecture
CORBA · 55

Common Warehouse MetaModel
CWM · 54

Compaq · 15, 20, 28
Compuware · 69
Conectiva · 31, 32
CORBA · 53, 55, 56, 59, 142

Open Technologies for An Open World Jean Binder

 145

crackers · 30, 93, 119
Crystal · 50, 75
CurlUnit · 78
CWM · 54
cXML · 86
cyberspace · 93, 125, 134

D

DARPA · 26, 43, 45
DataNews · 32, 41, 110
De facto · 8, 9
De jure · 8, 9
Debian · 103, 140
DEC · 25, 26, 31
Democracy · 124
design · vi, 2, 5, 6, 8, 10, 13, 31, 42, 45, 52,

56, 57, 60, 75, 76, 77, 78, 86, 92, 103
DNS · 44, 137
Domain Technology Committee

DTC · 60
DOS · 21, 35, 36, 39, 40, 81, 106, 114
DoubleClick · 97
DTC · 60
DTD · 84, 86
Dynamic Systems Development Method ·

75

E

EAI · 59
EBCDIC · 22, 80, 81
Eclipse · 64
EDI · 86
EDOC · 58, 59
EIA · 129
Electronic Privacy Information Center

EPIC · 97
ELVIN · 71
Enterprise Application Integration

EAI · 59
Enterprise Distributed Object Computing

EDOC · 58
Entity-Relationship modelling · 57
EPIC · 97
ESA · 22, 24
ethical · 7, 30, 95, 98
Europe · 120, 129
European · i, vi, 32, 38, 119, 120, 121, 129
European Community · 119
Extreme Programming

XP · 75, 76, 78, 142

F

FDDI · 129
feedback · 75, 76, 77, 100, 101, 102, 103,

113
FiveSight · 74
Frame Relay · 10
Free Software · 9, 30, 142, 143
FTP · 44
Fujitsu-Siemens · 14

G

global economy · 92, 98
Globus project · 17
GNU · 5, 30, 94, 103, 139, 143
GPL · 5, 104
graphical user interface

GUI · 61
Grid · 17, 18
GUI · 61

H

hackers · 1, 6, 7, 30, 33, 39, 88, 93, 94, 95,
96

hackers’ · 6, 7
hardware · vi, 2, 8, 9, 10, 13, 16, 17, 18,

20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33,
35, 36, 38, 40, 41, 42, 43, 48, 49, 50, 51,
61, 62, 64, 65, 69, 91, 98, 100, 103, 104,
105, 106, 107, 108, 111, 113, 115, 116,
117, 118, 122, 124

hierarchical oligopolies · 92
High Availability · 143
Hitachi · 14, 28
horizontal corporation · 92
HP · 15, 17, 26, 28, 103, 116, 124, 143
HPC · 17
HPR · 44
HTML · 38, 47, 51, 52, 64, 65, 82, 83, 84,

97, 105, 127, 135
Human resources · 107
Human-Usable Textual Notation

HUTN · 58
HUTN · 58
hypertext · 46, 82, 87, 94

I

IAB · 47, 128

Open Technologies for An Open World Jean Binder

 146

IANA · 47, 129
IBM · 8, 10, 14, 19, 20, 21, 22, 23, 24, 25,

27, 28, 33, 35, 38, 39, 40, 43, 44, 48, 49,
80, 81, 91, 98, 99, 100, 101, 102, 103,
106, 107, 116, 117, 118, 119, 124, 134,
136, 143

ICANN · 44, 129
ICT · 50, 98
IDL · 55, 56
IEEE · 27, 28, 129
IESG · 128
IETF · 18, 46, 47, 72, 97, 128, 138, 139
IIOP · 55
informational economy · 92, 98
Infrastructure · 13, 68, 138
Initiative for Software Choice

ISC · 120
innovation · 11, 23, 28, 36, 42, 68, 74, 91,

98, 102, 104, 109, 114, 119
Intel · 10, 19, 35, 38, 40, 48, 71, 92, 96, 99,

103, 113, 116, 118, 120, 139, 143
intellectual property · 3, 52
Interface Definition Language

IDL · 55
Interlink · 100
Internet · vi, 1, 2, 6, 7, 8, 10, 17, 18, 19, 20,

24, 25, 26, 31, 33, 38, 39, 42, 43, 44, 45,
46, 47, 50, 51, 52, 63, 65, 70, 72, 73, 90,
94, 97, 99, 100, 105, 106, 115, 117, 119,
127, 128, 129, 134, 135, 136, 137, 138

IP · 10, 43, 44, 100, 129
ISC · 120, 121, 122
ISO · 28, 42, 80, 81, 82, 129
ISOC · 128, 129
ISP · 50
ISV · 22, 23, 25
ITU · 130, 136, 137

J

J2EE · 62, 68, 71, 72, 73
J2ME · 62
J2SE · 62
Java · 18, 20, 40, 55, 60, 61, 62, 63, 64, 65,

66, 68, 69, 71, 72, 73, 78
Java bytecodes · 62
Java virtual machine

JVM · 61, 63
Jboss · 64
Jedit · 71
Jini · 64
Junit · 64, 78

JUnit · 78
JVM · 61, 63

K

kernel · 30, 31, 103

L

LAMP · 69, 71, 127, 142
legacy · 14, 67, 99
LGPL · 5
license · 3, 4, 5, 27, 35, 41, 64, 69, 104,

107, 113, 114, 120
Linux · vi, 4, 24, 30, 31, 32, 33, 34, 38, 39,

41, 49, 68, 69, 70, 71, 72, 94, 99, 100,
101, 102, 103, 104, 106, 107, 109, 111,
113, 115, 116, 117, 127, 136, 139, 140,
141, 143

M

MAC · 44
Mac OS · 70, 114
Macintosh · 19, 35, 38, 39, 40, 99
Macromedia · 71, 109
Mainframe · 67
Mainframes · 14, 33
MandrakeSoft · 31, 32
Massachusetts Institute of Technology

MIT · 25
MathML · 87
MDA · 2, 52, 53, 54, 59, 78, 125, 142
MDC · 54
Meta Group · 74, 78
Metadata · 60, 83
Meta-Data Coalition

MDC · 54
metalanguage · 83
metamodel · 54, 59
Meta-Object Facility

MOF · 54
Metcalfe · 90, 99, 138
methodologies · 52, 58, 60, 75, 106
Microsoft · 35, 36, 37, 38, 39, 51, 63, 65,

66, 67, 68, 69, 70, 71, 72, 73, 92, 95, 96,
97, 99, 100, 103, 104, 106, 107, 113,
115, 118, 119, 120, 121, 122, 135, 136,
140, 141

Microsoft CDF · 84
Microsoft SQL Server · 70

Open Technologies for An Open World Jean Binder

 147

Millenium · 14, 133
minicomputers · 14, 15, 42
MIT · 30
Model Drive Architecture

MDA · 52
Modelling · 52, 57
MOF · 54, 59
Moore’s law · 91
Morgan Stanley · 111, 140
Motorola · 26, 28, 31
Mozilla · 5, 100
MPL · 5
MS-DOS · 35, 36, 39, 99
M-Series · 14
MS-Excel · 122
MS-Word · 122
MULTICS · 25
multimedia · vi, vii, 19, 40, 80, 81, 96, 136
MySQL · 69, 70, 127, 134

N

Net · 2, 47, 65, 68, 72, 93, 121, 124
NetPC · 20
Netscape · 5, 38, 51, 96, 97, 100
NetWare · 37
network · 2, 8, 9, 10, 15, 16, 17, 19, 20, 26,

34, 39, 42, 43, 44, 45, 46, 50, 51, 63, 64,
67, 69, 83, 84, 85, 90, 91, 92, 93, 94, 95,
96, 98, 99, 100, 101, 104, 105, 108, 111,
113, 115, 116, 117, 128, 129, 138

Network Computers · 20
Network Computing · 20
networked companies · 92
new economy · 2, 98
normalisation · 9
Novell · 28, 37
NPL · 5

O

Object Code Only · 23
Object Constraint Language

OCL · 58, 59
Object Request Broker

ORB · 55, 56
object-oriented · 52, 57, 58, 59, 61, 63, 82
OCL · 59
OCO · 23
OEM · 22, 23
OGSA · 17
OMC · 122

OMG · 52, 53, 54, 55, 56, 58, 59, 60, 130,
134, 142

OMT-2 · 57
OOSE · 57
Open Source · i, 3, 4, 5, 6, 7, 9, 13, 17, 23,

98, 99, 107, 109, 111, 113, 116, 119,
120, 121, 122, 133, 143

open standards · vi, 3, 52
OpenEdition · 99
operating system · 10, 21, 22, 23, 24, 25,

27, 30, 31, 32, 33, 34, 35, 37, 38, 40, 42,
48, 49, 51, 61, 66, 71, 96, 99, 100, 101,
104, 105, 106, 108, 115, 119

Operating Systems · 21, 40, 48, 134, 137
Oracle · 28, 70, 105, 107, 116, 118, 124,

143
ORB · 56
OS/2 · 35, 40, 115
OSF · 27, 28
OSI · 3, 9, 10, 42, 43, 91, 115, 129
OTP · 86

P

P2P · 39, 94
Pair programming

XP · 77
Passport · 65
PC · 8, 19, 20, 35, 38, 39, 40, 81, 95, 96,

99, 115
PC-DOS · 35
PDAs · 20
PDF · 70, 127
peer-to-peer

P2P · vi, 17, 39, 83, 88, 94, 124
Perl · 69, 70
personal computers · 13, 17, 19, 31, 35, 96
PHP · 6, 51, 69, 70, 71, 127, 134
PIM · 53, 54, 59
Platform Technology Committee

PTC · 60
platform-independent · 52, 62, 64
Platform-Independent Model

PIM · 53, 54
Platform-Specific Models

PSM · 53, 54
POSIX · 27, 28, 63, 99
PrimePower 2000 · 14
privacy · 85, 95, 96, 97, 119, 139
Processor Serial Number

PSN · 96

Open Technologies for An Open World Jean Binder

 148

proprietary · 2, 3, 5, 9, 20, 22, 25, 35, 39,
43, 47, 50, 51, 65, 66, 67, 69, 71, 72, 73,
80, 81, 85, 91, 92, 97, 99, 103, 104, 105,
106, 107, 108, 109, 113, 114, 116, 119,
120, 121, 122, 124, 127

protocol · 10, 43, 46, 47, 94, 97, 129
protocols · 2, 8, 9, 10, 13, 17, 20, 26, 42,

43, 48, 72, 74, 90, 91, 99, 102, 105, 106,
111, 115, 117, 121, 122, 124, 128

PSM · 53, 54, 59
PSN · 96
PTC · 60
Public Domain · 4, 5
Python · 55, 60, 69, 71

Q

Q-DOS · 35
quality · vi, 3, 23, 38, 40, 46, 51, 74, 75,

78, 98, 99, 101, 103, 119, 124, 130

R

R&D · 9, 21, 91, 92, 103, 117
RACF · 100
RAID · 19
RDF · 87
Real Software · 69
Red Hat · 31
Re-factoring · 77
research · vi, vii, 4, 17, 33, 35, 43, 45, 47,

90, 92, 103, 110, 111, 113, 117, 119,
120, 124, 128, 138

Resource Description Framework
RDF · 87

Return on Investment
ROI · 109

RFC · 47, 82, 128, 137, 138, 139
ROI · 109, 110

S

S/36 · 101
SAP · 50, 103, 107, 116, 143
SAS · 107, 116, 143
schema · 74, 84
Science · 7, 45, 90, 135, 139
scientific · 7, 9, 91, 102
scientific method · 7
SCO · 28, 31, 32
Scrum · 75

security · 15, 17, 36, 44, 46, 65, 70, 86,
100, 108, 113, 119, 122, 124

Sendmail · 6
server

servers · 13, 15, 16, 17, 20, 32, 37, 44,
51, 62, 68, 70, 71, 73, 97, 99, 101,
104, 105, 111, 113, 115, 116, 129

SETI@home · 17
SGML · 82, 83, 84
Siemens · 26, 28
Sinclair · 19
SLA

Service Level Agreement · 16
Small releases

XP · 77
SNA · 43, 44
SNMP · 128
SOAP · 17, 72
software · vi, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13,

17, 18, 20, 21, 22, 23, 24, 28, 30, 31, 32,
33, 35, 36, 38, 39, 40, 42, 43, 48, 49, 51,
61, 63, 64, 65, 67, 69, 70, 71, 73, 74, 78,
79, 83, 85, 86, 91, 94, 95, 96, 98, 99,
100, 103, 104, 105, 106, 107, 108, 109,
113, 115, 117, 118, 119, 120, 121, 122,
124, 128, 130

software engineering · 5
source code · 1, 3, 4, 5, 7, 23, 26, 30, 31,

41, 51, 106, 118, 119, 121
SourceForge · 78
Specification & Description Language · 57
standardization · 1, 21, 22, 27, 32, 46, 47,

80, 81, 129
standards

Standardization · vi, 2, 8, 9, 10, 13, 17,
18, 21, 22, 23, 24, 25, 28, 32, 34, 38,
42, 43, 46, 47, 51, 72, 73, 80, 81, 90,
91, 92, 98, 100, 101, 102, 103, 105,
106, 109, 113, 114, 117, 118, 119,
120, 122, 128, 129, 130, 137

Standards · i, 7, 8, 9, 32, 47, 73, 80, 83,
92, 102, 120, 128, 129, 137, 138, 139

stylesheets · 86, 87
subculture · 93
subsidies · 119, 120
Sun · 15, 17, 20, 26, 27, 28, 32, 63, 64, 71,

87, 91, 103, 106, 130
SuSE · 31, 32
System/360 · 22, 25, 80, 101
System/370 · 25

Open Technologies for An Open World Jean Binder

 149

T

TCO · 41, 106, 108, 109, 124
TCP · 10, 43, 44, 46, 73, 91, 94, 100, 105,

115, 128, 137
TCP/IP · 10, 43, 44, 46, 73, 91, 94, 100,

105, 115, 128, 137
TheOpenEnterprise.com · 111, 116
Time Sharing · 13, 50
time-sharing systems · 45, 93
Total Cost of Ownership

TCO · 41, 106, 124, 140
TRS80 · 19

U

UML · 2, 53, 54, 57, 58, 59, 60, 134, 142
UML Profile · 58
United Nations · 130
UnitedLinux · 32
UNIX · 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 37, 38, 39, 40, 41, 43, 45, 49, 68, 70,
81, 94, 98, 99, 101, 102, 106, 107, 115,
119, 134

UNIX 98 · 27, 30
Usage-Centered Design · 75
USG · 26
USO · 26

V

vapourware · 103, 114
VAX · 25
VINES · 37
virtual communities · 93, 94, 124
VSE · 21, 24, 116
VSE/ESA · 21

W

W3C · 47, 72, 82, 83, 87, 128
Web applications · 52
web services · 2, 9, 52, 65, 71, 73
WebPC · 20

welfare · 102, 119
WiFi · 20
Wi-Fi · 47
Windows · 9, 33, 35, 36, 37, 38, 39, 40, 63,

65, 66, 68, 70, 72, 73, 96, 106, 107, 108,
109, 110, 113, 114, 117, 119, 122, 137,
140, 141

Windows 9x · 36
Windows CE · 66
Windows Millennium · 36
Windows NT · 36, 37
Windows XP · 36, 66
World Wide Web · 46, 82, 87, 128
WSDL · 17, 72, 74

X

X/Open · 27, 28
X/Open Portability Guides · 27
XA · 22, 24
XBD · 27
Xbreed · 75
XCU · 27
XEROX · 35
XMI · 60
XML · 2, 17, 37, 52, 60, 65, 66, 67, 68, 71,

72, 74, 82, 83, 84, 85, 86, 87, 105, 122,
125, 127, 135, 136, 141, 142

XML/EDI · 86
XP · 38, 66, 75, 76, 77, 78, 106
XPG · 27
XSH · 27
XSL · 86
xUnit · 78

Y

Y2K · 22, 117

Z

z/OS · 21
z/VM · 10, 21, 24
zSeries · 14, 49, 134

Open Technologies for An Open World Jean Binder

 150

This paper is Copyright © 2003 Jean Binder. Verbatim
copying and duplication is permitted in any medium
provided the source is mentioned and this notice is

preserved.

	Foreword
	Introduction
	Structure
	Open
	The Open Model
	Open Source
	The Open Standards

	Part I – Open Technologies
	Open Infrastructure
	Hardware
	Traditional Server Families
	Servers – The new generation
	Autonomic grid on demand
	Clients

	Operating Systems
	z/VM and z/OS
	UNIX®
	Linux
	Windows
	Other Operating Systems
	Classification

	Communication
	Network
	Addressing
	The Internet
	Trend: Open Spectrum

	Open Trends

	Open Internet Development
	Design
	MDA
	CORBA
	UML

	Web Platforms
	Java
	.NET
	Java.NET
	The outsiders: LAMP

	Web Services
	Agile Development
	Extreme Programming
	Extreme Programming and Open Source

	Open decision

	Common structures for data exchange
	Content
	Character Codes
	Multimedia
	Formats for the Document Interchange

	XML
	Introduction
	Technical Strengths
	Openness
	XML components
	Industry Applications

	Trends

	Part II – Brave Open World
	The Network Society
	Networks
	The Network Enterprise
	From merchant networks
	To the merchantable network

	Peer-to-peer and collective conscience
	Online communities
	Peer networks and cooperative computing
	May the force be with the hackers
	The motivated and ethical hacker
	May the force be with the hackers
	Lingua Franca

	Privacy

	The New Economy
	Standard wars
	Network externalities
	Feedback
	Positive
	Negative
	The role of the standards

	Cost Analysis
	Production Costs
	Reproduction Costs
	Distribution Costs
	Transaction Costs
	Changing costs
	TCO
	Cost comparison
	ROI - The conclusion is beyond the costs
	Case studies – cost reduction

	Evolution and Control: Two flavours, four strategies
	Openness or Control
	Performance or Compatibility
	The strategies

	The shift of power
	Behind the marketing scenes
	The experience economy
	Branding

	Politics
	Openness by research
	Openness by usage
	Openness by law enforcement
	Openness by stimulation

	Part III – CODA
	Open Future
	INCA

	Part IV – Annexes
	The Open book
	Standards Organizations
	References
	Trademarks
	Figures
	Tables

	Bibliography
	Index

